
Integration of Content into Enterprise Applications -
Analysis, Conceptualization and Prototypical

Implementation using Java EE and JCR

Master Thesis
Master of Science in Computer Science

Darmstadt University of Applied Sciences

Hendrik Beck

1st Supervisor: Prof. Dr. Bernhard Humm
2nd Supervisor: Prof. Dr. Inge Schestag

Started on: June 16th 2007
Date of submission: January 16th 2008

Declaration of Academic Honesty

I hereby declare to have written this thesis on my own, having used only means and resources
explicitly listed here.

Hendrik Beck
Darmstadt, January 16th 2008

Thank you

Prof. Dr. Bernhard Humm, Darmstadt University, for interesting discussions and for a helpful
and pleasant supervision.

Bernd, for inspiring discussions, useful hints and support during this time and for your valu-
able feedback.

My sister Melanie, for believing in me - even after having read through the whole thesis.
And for your feedback after having done that.

My family, again for making all this possible. Thank you for everything.

Thu’, for being there, for keeping up my motivation, for constantly believing in me and
for taking care.

Abstract

"Content", defined as data that is mostly semi-structured or unstructured, is becoming more
and more important in business contexts. In enterprise applications, per se operating with
fully structured data sets, content-related features like full text searches are costly to imple-
ment.

This thesis investigates different types of data as well as their utilization in enterprise
applications and content applications. This is the foundation for further elaboration on a de-
cision process. This process aims to find a proper implementation model based on the types
of data required to be processed, the required content features as well as the expected integra-
tion complexity of enterprise data and content data. It then leads to enterprise applications
or content applications in case of homogenous sets of data or to hybrid solutions in case of
heterogeneous sets of data.

Subsequently, hybrid systems are under investigation. The integration complexity is of
particular interest, being the largest cost driver in this model of implementation. A framework
on top of Java EE 5 and JCR has been developed that integrates enterprise and content data
on application level. This approach is called "Total Integration" and makes further, manual
integration tasks obsolete. As the concerns of the integration have been separated out of the
actual enterprise application, initial development efforts as well as maintenance costs are also
reduced.

Kurzfassung

Der Begriff "Content", definiert als Daten die größtenteils semi-strukturiert oder unstruk-
turiert vorliegen und mit vollstrukturiert ausgerichteten Systemen nur unzureichend verar-
beitet werden können, erlangt im Unternehmenskontext immer größeren Stellenwert. In
Unternehmensanwendungen auf Basis von z.B. Java EE oder .NET lassen sich Content-
verarbeitende Funktionalitäten wie Volltextsuchen nur aufwändig implementieren.

Die vorliegende Arbeit untersucht die unterschiedlichen Typen von Daten sowie deren
Einsatz in Unternehmensanwendungen und Content-Anwendungen. Darauf aufbauend wurde
ein Entscheidungsprozess entwickelt, der es erlaubt, unter Einbeziehung der zu verarbeiten-
den Daten, der benötigten Funktionalitäten zur Verarbeitung von Content sowie der zu er-
wartenden Integrationskomplexität von Unternehmensdaten und Content-Daten eine fundierte
und dokumentierte Entscheidung über ein geeignetes Implementierungsmodell zu finden. Dies
führt zu den Varianten reiner Unternehmens- bzw. Content-Anwendungen bei einer homoge-
nen Datenbasis oder einer Hybrid-Anwendung bei heterogenen Daten.

In Hybrid-Systemen, die im weiteren Verlauf von besonderer Bedeutung sind, spielt die
Integrationskomplexität eine große Rolle, da sie den hauptsächlichen Kostentreiber in diesem
Implementierungsmodell darstellt. Es wurde ein Framework auf Basis von Java EE 5 und JCR
entwickelt, das Unternehmensdaten und Content-Daten aus zwei verschiedenen Systemen auf
Anwendungsebene integriert. Der "Total Integration" genannte Ansatz macht zusätzliche
manuelle Integrationsaufgaben obsolet. Da die Belange der Integration aus der eigentlichen
Zielanwendung extrahiert werden, werden initialer Entwicklungsaufwand und Wartungskosten
zusätzlich reduziert.

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Scope, Goals and Contribution . 5
1.3 How to read this thesis . 5
1.4 Typographical conventions . 6
1.5 Applications and source code . 6

2 Enterprise Application Frameworks 7
2.1 Terminology . 7

2.1.1 Enterprise Applications . 7
2.1.2 Enterprise Application Frameworks . 7

2.2 Conceptual Overview . 8
2.3 Data in Enterprise Applications . 9

2.3.1 Structuredness of Enterprise Data . 9
2.3.2 Relational Databases . 10
2.3.3 CRUD . 11
2.3.4 SQL . 11
2.3.5 Transactional Processing of Data . 11

2.4 Market Overview . 13
2.4.1 Overview . 13
2.4.2 Java Enterprise Edition . 13
2.4.3 .NET . 13

2.5 Java 5 Enterprise Edition . 14
2.5.1 Overview . 14
2.5.2 Business Logic . 14
2.5.3 Persistence . 15
2.5.4 Transactions . 16
2.5.5 Interceptors . 17
2.5.6 Annotations . 18

3 Enterprise Content Management 19
3.1 Terminology . 19

3.1.1 Fully structured data . 19
3.1.2 Unstructured data . 19
3.1.3 Semi-structured data . 19
3.1.4 Content . 20
3.1.5 Content Management / Content Management Systems 21
3.1.6 Enterprise Content Management . 21
3.1.7 Enterprise Content Integration . 21

1

Master Thesis Hendrik Beck

3.2 Typical Use-Cases of Content . 21
3.2.1 Full-text search . 21
3.2.2 Discovery Querying . 22
3.2.3 Searching Binaries . 22
3.2.4 Inexact Querying . 22
3.2.5 Versioning / Merging . 23
3.2.6 Internationalization . 23
3.2.7 Summary . 23

3.3 Market Overview . 23
3.3.1 Product Categories . 23
3.3.2 Java Content Repository . 24

3.4 Java Content Repository . 24
3.4.1 History . 24
3.4.2 JCR Concepts . 24
3.4.3 Repository Model . 26
3.4.4 Node Types . 27
3.4.5 JCR API . 28
3.4.6 Querying . 28
3.4.7 Versioning . 28
3.4.8 Transactions . 28
3.4.9 Apache Jackrabbit . 29
3.4.10 The mapping framework Jackrabbit-OCM 29

4 Implementation Models and Decision Process 30
4.1 Problem Setting . 30
4.2 Implementation Model Decision Process . 30

4.2.1 Related Work . 31
4.2.2 Influencing Factors . 31
4.2.3 Implementation Models . 32

4.3 Enterprise Applications and Content Applications 32
4.3.1 Differences between both kinds of application 32
4.3.2 Implications on Design Decisions . 33

4.4 Qualitative and quantitative methods . 34
4.4.1 Survey Method . 35
4.4.2 Data Type Method . 37
4.4.3 Semantic Method . 37
4.4.4 Implications and Summary . 38

4.5 Results of the decision process . 39
4.6 Hybrid implementations . 39

4.6.1 Reintegration . 40
4.6.2 Integration Complexity . 40
4.6.3 Cost development in hybrid implementations 40
4.6.4 Types of Initial Costs . 41
4.6.5 Maintenance Costs . 42

4.7 Conclusion . 42

2

Master Thesis Hendrik Beck

5 Application of the Hybrid Persistence Concept and Prototypical Implemen-
tation 44
5.1 User Story . 44
5.2 The Example Application . 45

5.2.1 Technology Prerequisites . 45
5.2.2 Architectural Overview . 45

5.3 Decision Process Applied for the Example Application 46
5.4 Conceptual Overview . 48

5.4.1 Overview . 48
5.4.2 Conceptual Aspects . 48

5.5 Framework Implementation . 50
5.5.1 Modelling . 50
5.5.2 Activation . 54
5.5.3 Configuration . 55
5.5.4 Operation . 59
5.5.5 Content Services . 61

5.6 Integration in the Example Application . 63
5.6.1 Environment Prerequisites . 64
5.6.2 Modifications on Entities . 64
5.6.3 Modifications on SessionBeans . 65
5.6.4 Transactions . 65

5.7 Future Work . 66

6 Evaluation 69
6.1 The Decision Process . 69
6.2 Fields of Suitability . 69
6.3 Cost Savings . 70

6.3.1 Follow-up Costs . 71
6.3.2 Initial costs . 71
6.3.3 Maintenance Costs . 71

6.4 Applicability for other platforms . 71

7 Conclusion 73
7.1 Future Work . 73
7.2 Summary . 74

A Links 76

B Sources 77
B.1 Interceptors . 77

B.1.1 PersistInterceptor . 77
B.1.2 PersistCollectionInterceptor . 77
B.1.3 LoadInterceptor . 78
B.1.4 LoadCollectionInterceptor . 78
B.1.5 DeleteInterceptor . 78

B.2 Example Entity Object Enriched with Content 79
B.3 Interface ContentConfiguration . 79
B.4 JackrabbitOcmContentManager . 80
B.5 Content Mapping Description . 83

3

Chapter 1

Introduction

1.1 Motivation

After Content has been a field of research for a long time it first became popular with data-
centric web applications and web content management systems. In recent years its significance
and awareness is rising in the context of enterprise environments. Especially its characteristic
of unstructured and semi-structured data, roughly speaking data without recognizable or
predictable structure like videos, Office documents or freely written text, is applicable for
a huge quantities of information existing in organizations. According to Gartner as much
as 80% or more of company-wide existing information relates to those categories of data1.
The discipline of Enterprise Content Management provides definitions of terms and delivers
solutions to effectively manage that kind of data. Enterprise Content Integration is working on
strategies and concepts to create common integrated data repositories on high organizational
levels.

In the context of enterprise applications nonetheless, content is traditionally playing a
minor role. These applications work with fully structured data, often specified through entity
objects that are designed according to object-oriented paradigms and are then being mapped
into relational databases. This approach per se lacks of support for unstructured and semi-
structured data. Usually content data and documents are stored as text or binary large
objects (BLOB), structure and semantics are mostly ignored. Certain use-cases in conjunction
with content, e.g. versioning, internationalization, full-text searches or inexact queries aren’t
part of standard persistence products. If necessary, those features have to be modelled and
implemented into applications on a case-per-case basis and tend to become cost-drivers despite
their actual triviality. Due to the fact, that specialized content management applications easily
fulfill those requirements, this often leads to parallel usage of both kinds of applications in
order to cover the requirements. This approach will be called hybrid implementation.

This leads to a seperation of data into one of the two systems even though from a business
point of view they were identified as belonging to the very same entities. Afterwards, portions
of the data often have to be re-integrated in order to allow simultaneous processing in target
applications. Once originated to reduce content-related costs, the complexity of this re-
integration arises as the new cost driver in those hybrid implementations.

This thesis tries to formalize this process of finding the appropriate model of implementa-
tion. In case of hybrid implementations this process is also intended to support the decision
on how to separate a given set of data into two different systems. It also evaluates the main
cost drivers for different implementation models. It then takes a closer look at hybrid imple-

1See [RK05].

4

Master Thesis Hendrik Beck

mentation. Based on desired cost reductions a prototypical solution will be developed that
integrates enterprise data and content data and reaches significant cost reductions.

1.2 Scope, Goals and Contribution

The scope of this thesis are:

• To examine the characteristics of fully structured, semi-structured and unstructured
data in enterprise environments and their implications on implementation models. Sub-
sequently, a decision process model is introduced that supports architects and developers
in determining proper architectural choices based on the actual data that are required
to be processed in the target system.

• To investigate the cost behavior of the identified implementation models in order to
develop strategies to reduce costs of implementations.

• To conceptualize a solution that performs a generic integration of data stored in two
systems. The principles behind this solution should be applicable for a wide range of
different standards and products in the world of enterprise and content applications.

• To develop a prototypical application that implements the concepts described before-
hands.

The concrete goals expected as outcomes of this thesis are:

• A prototypical decision process that leads to implementation models based on given
entity data required to be processed by an application.

• In case the outcome of the process leads to a hybrid implementation model, this process
should also support the decision, which system to store particular data in.

• The main cost drivers of the different implementation models should be identified. This
should help to better understand the rationales for one or another model.

• A major focus of this thesis also lies on hybrid implementation models. Thus, based on
the main cost drivers a concept should be developed on how to significantly reduce costs
in hybrid implementation models. This concept should be prototypically implemented.

• A small-scale example application should serve as a playground for demonstrating the
decision process as well as the implemented solution.

1.3 How to read this thesis

Chapter 2 of this thesis introduces the basic concepts behind enterprise application frame-
works, gives a market overview and explains how the basic concepts are being realized in Java
Enterprise Edition 5.

Chapter 3 introduces definitions around content in enterprise environments. Besides that
terminology, it also gives concrete use-cases that occur in conjunction with content. Finally it
gives a market overview and shows how the standard JSR-170 addresses the general concepts
of content management in a standardized model.

Chapter 4 compares the different types of data processed in enterprise applications and
content applications as well as differences between the actual systems themself. Based on that

5

Master Thesis Hendrik Beck

it explains how this leads to different implementation models in a given project situation. A
decision process model is presented to support architects and developers in determining an
appropriate model of implementation.

Chapter 5 describes in detail the integration framework that has been developed through-
out this thesis. It introduces a user story and example application, explains technology-
independets concepts of the thesis, describes the implementation and shows how it can be
integrated in the example application.

Chapter 6 evaluates the concepts as well as the prototypical application in accordance
with the requirements stated earlier in this chapter. It shows that all the goals of this thesis
have been reached. It also shows how the concepts and the experience taken from the proto-
type can be used to determine the general value in other environments than the one of this
thesis.

Chapter 7 summarizes the work of this thesis, gives a high-level conclusion and outlook
for further fields of investigation.

The appendix contains resources of interest for this thesis such as source code, diagrams
and links. Many of them are referenced within the text.

1.4 Typographical conventions

The following conventions are used throughout thesis:

Java class names Java classes and class names are written in italic typeface. As full-
qualified Java names tend to get very long due to deep package hierarchies, the first four
packages are usually abbreviated. Instead of com.camunda.research.jcr.cef.impl.ocm.Content
the abbreviated spelling c.c.r.j.cef.impl.ocm.Content will usually be used.

Source code Source code is written in Courier typeface, mostly in separated boxes. Please
note that source code might not be directly executable due to omissions of irrelevant
parts where applicable, e.g. exeception handling. In those cases, omissions are intended
to clarify the essential parts of the source code and thus enhancing understandability of
the examples.

1.5 Applications and source code

Applications and source code developed throughout the thesis are available from the autor.

6

Chapter 2

Enterprise Application Frameworks

This chapter introduces enterprise applications and enterprise application frameworks in the
contex of this thesis. After a rough and general overview enterprise applications in general
are introduced. After that a brief market overview is given on frameworks that are seen as
enterprise application frameworks. Finally Java EE 5 as a popular and modern enterprise
application framework is introduced. It is also explained how the integral parts of enterprise
application frameworks are specifically realized in Java EE 5.

2.1 Terminology

2.1.1 Enterprise Applications

A definition of the term Enterprise Application will be required for this work. It’s hard though
to identify a common clear definition from available literate. Inspired by various sources1 the
author will give his own definition considerered to be valid throughout this thesis:

An Enterprise Application is a piece of software developed and used mostly for
business purposes of one or several business domains or whole organizations. It
stores data, processes data within rather complex business logic implementations
and may have user interfaces of some kind. It tends to be large, complex, dis-
tributed and embedded into a wider scope of applications within an IT landscape.
Hence it may also be required to integrate several other ressources or applications.
The services provided by this application are usually mission-critical to the organi-
zation it is run by. This implies that strong technical requirements and constraints
have to be met in order to provide the reliability, performance and scalability.

It has to be noted that this is not intended to give a common, unambigious definition of
the term. It has rather the purpose to narrow done the scope of this thesis which applies to
applications that are similar to the ones defined above.

2.1.2 Enterprise Application Frameworks

Based on the given definition of an enterprise application, the term Enterprise Application
Framework is defined as follows:

An Enterprise Application Framework is a piece of software that supports ap-
plication developers in reaching technical and business requirements for an enter-
prise applications. Therefore, it usually defines technical services that implement

1See e.g. http://www.theserverside.com/discussions/thread.tss?thread_id=38042, [MB07], [GH03] [MF02].

7

Master Thesis Hendrik Beck

or help to implement certain technological features like transactions, persistence
or high-availability concepts. To be able to achieve this complex set of features
and requirements, it usually also specifies a certain runtime environment. The
two enterprise application frameworks that are considered to be the closest to the
definition required in this thesis are Java EE and .NET.

2.2 Conceptual Overview

Enterprise application frameworks generally support in developing and running enterprise ap-
plications. The requirements commonly existing in modern, large enterprise applications lead
to certain concepts that are usually covered by enterprise application frameworks. [MB07] for
example is giving the following requirements typically to be fulfilled by enterprise application
frameworks:

Back-end integration Back-end systems for data storage must be integrated into the ap-
plication, most typically a database system.

Persistence It must be possible to persist enterprise data in a proper way. A popular
approach is to map object-orientedly designed entity objects to the relational model in
order to store them in a relational database.

Consistency of data For complex operations with multiple individual steps, support of
transactional processing is required. See also section 2.3.5 for a detailed explanation.

Client access Since enterprise applications tend to be large, it must be ensured that multiple
concurrent client accesses are possible. Furthermore, authentication and authorization
are also important issues. Furthermore, they must also be able to access the same set
of data concurrently.

Performance, scalability, availability These non-functional requirements also have to be
fulfilled. Especially in applications that tend to become large, complex and distributed,
these issues become very important.

Software design The architecture as well as the principal paradigms must ensure that soft-
ware components are maintainable and portable. Appropriate layering of applications
and modularizations are widely accepted tools used to reach these goals and have to be
reflected by the framework.

An integral part that is often not covered by literature about enterprise application frame-
works is the the existance of a concept to implement business logic. Also, it is difficult to
find dedicated definitions for the term itself. In this thesis nevertheless, it is important to
outline that an enterprise application basically processes data. The way the data is processed
is implemented using programming languages and consists of algorithms appropriate to define
the required behaviour.

From the business logic point of view, most of the other integral parts of an enterprise
application are merely supporting this data processing. User interfaces, for examples, are used
to involve the user into the process of retrieving data from the user that have to be processed
and to present results of this processing. Databases are used to store data that has been
processed or may eventually be processed at a later time. Requirements like the performance
are used to ensure that data processing operations don’t exceed timeframes constrained by
external business factors. In conclusion, all components are working together in order to

8

Master Thesis Hendrik Beck

provide services, but in its core enterprise applications are processing data in way that is
defined by its business logic.

In the established three-tier application model2, business logic is located on the middle
tier. This is often referred to as the business logic tier. Business logic in modern enterprise
applications is usually developed based on the concepts of object-oriented design, object-
oriented programming languages and is usually component-based. An Example would be
EJB, the component model of Java EE.

In this thesis the business logic is essential in comparison with content management ap-
plications, introduced in chapter 3. The focus in those systems is to actually store data and
provide data-oriented services to clients. Enterprise applications are focussing on business
logic and hence they are used whenever data has to be processed in complex ways. This
requirement to process data will become one of the influencing factors of the decision process
introduced in chapter 4.

2.3 Data in Enterprise Applications

2.3.1 Structuredness of Enterprise Data

The characteristic of persistent data that is most important in the context of this thesis is
the structuredness. Enterprise applications are usually designed to work with fully structured
data.3

This not only influences the way data are finally stored, e.g. in a relational database. It
also influences how data are modelled on application level, e.g. in object-oriented entities.
The structure of this kind of data has the following characteristics:4

Pre-defined The structure is defined a-priori. In databases, schemas define tables, fields,
data types and the like beforehands. In object-oriented programming languages, classes
together with its attributes are defined during development and fixed at compile time.

Explicit The schema defines the structure ultimately. The actual values stored in it do not
contain any information about the structure. Relational databases as well as object-
oriented programming languages store schema information once at a central place, tables
and table rows itself as well as object instances only hold the actual values.

Regular For each instance of a defined entity the structure remains the same. Every row of
a table contains the same fields as well as every instance of a class contains the same
attributes. Values on the other hand can still be null, i.e. they do not contain anything.
But still the structure reserves the space for the actual value even if it is null.

Complete This also means that fields are never ommitted. Every instance contains the exact
same fields as defined within the structure.

Immutable The structure is immutable, i.e. it never changes. Unless, of course, the structure
is changed. But as the structure is kept centrally, the change would also have to be done
in this central structure made from outside. This would lead to a change in all data
stored with this structure.

2See [DK75].
3It is often often referred to as just "‘structured data"’. But for the sake of distinction to semi-structured

and unstructured data, here it will be called "‘fully structured data"’.
4See [Abi97].

9

Master Thesis Hendrik Beck

Constraining The structure constrains data, ensures type safety and, generally speaking,
protects the data from being used in the wrong way.

These characterstics of fully-structured data has two major consequences, that are also of
interest in the context of this thesis:

1. The structure is predictable As the structure is completely defined and known
beforehands, applications can make assumptions about the data. Similarly, strongly-
typed programming languages also make use of this characteristic. At development time
it can predicted which classes are available and which attributes they contain.

2. The structure is not very flexible Structures have been known completely before-
hands. Dynamic structures are not possible per se. They are always reached by different
workarounds.

2.3.2 Relational Databases

Relational databases, implementing the relational model, are by far the most popular way
to store fully structured data in today’s IT infrastructures.5 At different times the relational
model competed, and succeeded, against other database models, most notably the hierarchical
model, the network model and the object model. Its innovative concept introduced set-
oriented, flat and relation-based data management and a mathematical yet simple foundation.6

Relational databases contain the following major elements:

Tables Tables are entities that are intended to hold values. In the relational model, tables
are called relations. A relational database consists of a collection of tables.

Fields Tables may contain fields. These fields are of a certain data type, like string, integer
or boolean, and hold a value of this type. Due to the usual visualization of tables and
fields, fields are often universally addressed to as columns. One entry of a table is often
referred to as a row.

Primary Keys Each table might have one or more fields declared as primary keys. The
values of these primary key fields must be unique within an instance of this table. Rows
can unambigiously be identified using primary keys.

References Two tables can be connected with each other. A field of one table, the foreign
key, must be connected with the primary key of another table. These connections are
called references.

Besides tables, references are used to create structures and express connections within
relational databases. This was a major step off from hierarchical database models, where con-
nections between entities had to be expressed by hierarchical structures whereas the relational
model allows to modell small, simple and independent entities. This can be compared with
classes in object-oriented programming. They are per se independent but may be connected
with other classes e.g. via associations.

Tables and their containing fields are designed a-priopri. This is done by defining a schema.
Schemas are following the characteristics of fully-structured data given in the previous section.

5Both were first developed and published by Edgar Codd. See [Cod70] and [Cod90].
6Information about relational databases were taken from [AK04], [AH00] and [RE07].

10

Master Thesis Hendrik Beck

2.3.3 CRUD

The acronym is extended to Create-Read-Update-Delete. It denotes the four possible basic
persistence operations. A system offering or implementing all these persistence operations is
considered to be complete, i.e. to provide a complete set to perform any required operation.
The pattern is in common usage throughout the literature.

2.3.4 SQL

SQL, the Structured Query Language, was developed in 1974 by Donald D. Chamberlin and
Raymond F. Boyce. It was designed as a data management and retrieval language for rela-
tional databases. SQL is considered to machine-readable as well as intuitive and easy to read
for humans due to its obvious lingual similarity to the English language. SQL is a descrip-
tive, interpreted language. SQL was standardized by ANSI7 in 1986 and by ISO8 in 1987
with standards also exisiting from 1992, 1999 and 2003. Furthermore, many vendor- and
database-specific dialects are in use. SQL is divided in four major groups of statements:9

Data definition These statements can be used for data modelling purposes like creating,
altering and dropping tables or adding fields to tables.

Query They are used to select exisiting data within tables or referenced data existing across
tables.

Data manipulation These are used for tasks like adding, updating or deleting data.

Data control Use to grant and revoke user’s access right in order to achieve authorization
for existing data.

2.3.5 Transactional Processing of Data

Transactions are used to ensure that complex operations are being executed correctly. The
larger the number of individual steps is, the bigger the amount of time is the whole operations
needs to be finished and the more distributed in terms of different phyical places the operation
is, the more complex the operation will be. And hence the more problems arise. Transactions
are addressing these problems. The term transaction refers to the actual operation that has
to be perfomed.

The ACID model describes requirements transactions have to fulfil on execution time in
order to be called a sucessful transaction:10

Atomicity The transaction must be executed completely or not at all. This means that if
one operation within the transaction fails and is not executed successfully, then all the
other operations, if already finished or not even begun, must not be executed. To be
able to archive that, the terms commit and rollback are important and will be explained
afterwards. This characteristic of ACID is of particular interest in the context of this
thesis as the hybrid persistence developed throughout the thesis adds another operation
to every single persistence operation.

7ANSI, the American National Standards Institute, see http://www.ansi.org.
8ISO, the International Organization for Standardization or Organisation Internationale de Normalisation,

see www.iso.org.
9See e.g. [RE07], p.233.

10See [JG93], [PAB97] p.8.

11

Master Thesis Hendrik Beck

Consistency Consistency of the underlying storage has to be maintained even in case of a
failure.

Isolation All transactions are running isolated from other transactions concurrently exe-
cuted. Executing transactions must not be affected from results or effects of other
transactions.

Durability Any successful transaction leads to results, that will be persisted durable, e.g.
written into the file system or stored into a database.

As soon as two or more operations have to be executed as transactions satisfying the
ACID rules, the border of the transactions must be clear. Right before the first operation
the transaction will be started. This is the begin of the transaction. This is done by a Trans-
action Processing Monitor11. The TP monitor doesn’t participate in the actual transaction
but observes and controls from outside. In case any operation during the execution of the
transaction fails, none of the operations should be executed. Due to sequential-processing12

it can happen that some of the operations have already been performed successfully. Those
operations must be reverted so that they appear as not performed but still respect the ACID
criteria. Due to that fact the terms roll-back and commit have been introduced, along with a
transient state of operations. This means that transactions are being performed according to
the following schema:

1. An application is starting a transaction in accordance with the transaction monitor.

2. After that all operations are being performed. Every single operation that is finished
executing successfully still remains in a transient state because it might happen that
the whole transaction might fail. This means that the results can still be reverted.
Concrete implementations of this behaviour are up to particular components involved
in the transaction.

3. If an operation fails, the whole transactions has to fail. This is called a roll-back of the
transaction, along with roll-backs of each operation that has been executed so far.

4. If each operation completes successfully, then whole transaction succeeds. This is called
a commit. Again, this leads to a commit of every single operation transforming their
transient states to final persistent states.

In client-server applications transactions might not only be executed within the same
server. They may also be initiated by local or remote clients or be executed if servers com-
municate with each other. Such involvement of machines on different network hosts is called
a distributed transaction. Whereas the constraints remain the same as for local transactions
the effort and difficulty level to implement and manage those transactions rises. Enterprise
application frameworks provide support for transactions.

Transactions can also contain operations that are performing transactions themselves.
This is usually referred to as a nested transaction. However, there are different strategies
on how to react in such a situation. For example it is common, that transactions realize if
there’s an exisiting transaction available and "‘join"’ that transaction rather than initiating
their own transaction. This decision is usually the responsibility of the developer and is done
beforehands.

11Also referred to as Transaction Processing System, Transaction Monitor, TP system or TP monitor. See
also[JG93] p.239.

12In most common programming languages and processor architectures, operations are performed sequen-
tially despite a logical concurrency those operation are often regarded as.

12

Master Thesis Hendrik Beck

2.4 Market Overview

This section introduces popular frameworks that provide application developers with integral
features necessary for enterprise application to be developed efficiently and to be run properly.

2.4.1 Overview

Over the years many tools, applications, frameworks and standards evolved to address the
main requirements for enterprise applications. It can be stated that the requirements don’t
change essentially over time. But solutions vary and have been evolved over time in order
to provide application developers with ever more features, convenience and performance to
realize their applications.

In early years, transactions have been the first aspects seriously addressed by frameworks
supporting enterprise applications. The Customer Information Control System13, developed
by IBM, is a popular system supporting transactions. Corba14, developed by the OMG15,
was a standard intended to allow components running of different platforms and written in
different programming languages to communicate with each other. Such frameworks addressed
only parts of the requirements necessary to develop and run enterprise applications. Later,
frameworks were developed that support nearly every aspect of enterprise applications. They
are intoduced in the following.

2.4.2 Java Enterprise Edition

Java Enterprise Edition16 is a platform for developing and running client-server enterprise
applications based on Java. First released in 1999, Java EE has become one of the most
successful enterprise applications framework available. Java EE was also chosen to be the
platform of choice in this thesis. Hence, section 2.5 will elaborate on details of Java EE.

2.4.3 .NET

Microsofts .NET platform platform was first introduced in 2000. The first version 1.0 was
released later on in 2002. .NET is widely seen as the strongest competitor to the Java EE
platform yet both platforms are sharing a lot of conceptual similarities. Differences can be
seen in the number of available implementations, frameworks and tools due to Sun’s more
community-centric policies. Although there are ongoing discussions about advantages and
disadvantages of both17, the conceptual differences are marginal and technical details are
rarely decisive factors in favour or against one of them. More information can be found e.g.
in [Lib05].

13Abbr.: CICS. See e.g. http://www-306.ibm.com/software/htp/cics/library.
14See http://www.omg.org/technology/documents/formal/corba_2.htm.
15Abbr.: Object Management Group. See http://www.omg.org.
16Abbr.: Java EE, often referred to as J2EE.
17See e.g. http://www.oreillynet.com/pub/a/oreilly/java/news/farley_0800.html or

http://www.theserverside.com/tt/articles/article.tss?l=J2EE-vs-DOTNET.

13

Master Thesis Hendrik Beck

2.5 Java 5 Enterprise Edition

2.5.1 Overview

The Java Enterprise Edition 5 18 is a platform widely adopted to implement enterprise appli-
cations as introduced earlier in section 2.2. It has been developed under the Java Community
Process19 as JSR-244. The final release was published on May 11th 2006.20

It consists of specifications on how enterprise applications should be developed. This in-
cludes how different APIs and specifications are managed and wired together and conforms
how application servers should be designed, the runtime environment for enterprise applica-
tions based on Java EE. Notable examples of API’s included in Java EE 5 are:

• Enterprise Java Beans

• Transactions

• Java Naming and Directory Interface (JNDI)

• Java Messaging Service (JMS)

2.5.2 Business Logic

Java EE contains the specification of a component model called Enterprise Java Beans21.
The version of the EJB specification included in Java EE 5 carries the version number 3 and
was developed under the Java Community Process as JSR-220.22 It was released on May 11th
2006. Physically EJB defines two different artifacts: a specification written in plain text and
a set of Java API’s.

EJB can be seen as a standardized way to write server-side components. Due to its
conformity with the specification, components developed with EJB can be run in any com-
pliant runtime environment, called the EJB container. EJB also specifies this EJB container,
which is in practice usually part of an application server. This container is managing the
components which allows to outsource many standardized tasks and responsibilites into the
container. Examples for services provided by the container are lifecycle management, per-
sistence or transactions. EJB aims to reduce implementation overhead for the application
developer.

EJB provides an architecture to develop business logic in a standardized way using the
Java programming language. EJB defines different types of so-called beans. These beans are
generally adding information or behaviour to standard Java classes in order to allow the EJB
container to manage them appropriately. Based on the use-case that has to be implemented,
one of the following types provide the required behaviour.

Stateless Session Beans A session bean contains implementational logic and is intended
to fulfill business requirements. Session beans can be accessed by other session beans
or by clients directly. The EJB container is managing the lifecycle of this class, e.g.
instantiation or pooling. This bean is stateless as clients are not allowed to rely on
any inner state held by the session bean. As a technical consequence, instances of this
type of bean are usually randomly assigned to any client making a request. Hence,

18Abbr.: Java EE 5.
19See http://www.jcp.org.
20The specification can be found in [(JC06b].
21Abbr.: EJB.
22The specification can be found in [(JC06a].

14

Master Thesis Hendrik Beck

it is not guaranteed that a client request is consecutively processed by the very same
instance. This type of bean is generally preferred due to lower management overhead
in comparison with the stateful session bean explained afterwards. This type of bean
can be used for any operations that do not have to carry an inner state.

Stateful Session Beans Stateful session beans are carrying an inner state. They are instan-
tiated and assigned for exactly one client and are being destroyed afterwards without
being used by another client.

Message-driven beans Message-driven beans are intended to be used in asychnrounous
communication with client applications.

Entity beans Entitiy beans are containing data that is supposed to be persisted in a data-
base. The EJB container is taking out high amounts of the work necessary to successfully
store data in a database. The persistence aspect is covered in section 2.5.3.

2.5.3 Persistence

The specification of EJB 3 defines JPA, the Java Persistence API. It is a framework to
manage, persist and query relational data. JPA was developed under the Java Specification
Process as part of the specificiton process for EJB, JSR-220. It is widely recognized as an
enourmous improvement on EJB 2.X regarding persistence issues. In the context of this thesis
the most important difference to persistence mechanisms in earlier versions of EJB is that
JPA is intended to only work with relational data sources. Other storage format such as XML
databases or object-relational databases have been dropped in favour of relational databases.
The most notable characteristics of JPA are given in the following:23

• JPA uses a POJO24 model. Particularly, classes containing persistent data don’t have
to implement certain interfaces or the like.

• JPA entities are configured using an external deployment descriptor or embedded anno-
tations25. Typcial configurations are to mark classes as persistent, to mark associated
persistent objects or to alter the default configuration of JPA.

• Persistent objects can be detached from its logical connection to the persistent storage.
Then, they can be used as transfer objects. Later on, they can be attached again in
order to merge changes into the persistent state. This makes Data Transfer Objects, or
Value Objects, obsolete. Later on, this characteristic is used by the framework, that is
being developed.

Listing 2.1 shows a simple example Java class that holds persistent data. The annotations
@Entity, @Id and @OneToMany have to be noted. They provide configuration values for JPA
and they also change a normal Java class into a persistent Java class.

The annotation @javax.persistence.Transient is showing how JPA can be told not to persist
a particular attribute. That way, attributes are ignored by JPA and will not be stored in the
database.

23See [MB07], p.112.
24"‘Plain Old Java Object"’. The term was coined by Martin Fowler et al., see

http://www.martinfowler.com/bliki/POJO.html
25Annotations are introduced later in section 2.5.6.

15

Master Thesis Hendrik Beck

Listing 2.1: Example JPA Entity Class
1 @Entity
2 public class Customer {
3
4 @Id
5 private String id;
6
7 private String name;
8
9 @OneToMany

10 private Order[] orders;
11
12 @javax.persistence.Transient
13 private String otherInformation;
14
15 }

2.5.4 Transactions

After section 2.3.5 introduced the concepts behind transactions in enterprise applications this
section is looking at how transaction processing is realized in Java EE 526.

Transactions in Java EE 5 are part of the specification of Enterprise Java Beans version 3.0,
that has been introduced in section 2.5.2. EJB 3 prescribes the usage of transactions according
to JTA, the Java Transaction API specified in JSR-90727. JTA provides a standardized API to
use transactions and provides an abstraction from concrete implementations of participants of
transactions such as the transaction processing monitor. According to EJB 3, the application
server serves as transaction process monitor and is thus responsible for creating and monitoring
transactions.

Setting transactions

Java EE 5 provides support for different types of exceptions. They mostly vary in who is
responsible for initiating the transaction.

Container-managed The application server is taking care of transaction initiating, rolling
back and comitting transactions. Therefore the developer has the choice to decide whether
certain methods or all methods of a class should be executed within a transaction. This can be
done declaratively by using the deployment descriptor or annotations. It can be enabled by us-
ing the annotation @javax.ejb.TransactionManagement() and the value javax.ejb.TransactionManagementType.CONTAINER.

Bean-managed The bean itself takes care of transaction handling programmatically. This
can be enabled by using the annotation @javax.ejb.TransactionManagement() and the value
javax.ejb.TransactionManagementType.BEAN and by inserting commands to manage the
transaction. The resulting code basically looks like in listing 2.2.

Client-managed It is also supported that clients initialize transactions. This actually is
not really a distinct type of transaction but rather a capability of the application server to
take over existing transactions that were initiated by a client. In case of remote clients those
transactions become distributed transactions.

26See also [(JC06a], chapter 13 "‘Support for Transactions"’ on page 315 and following.
27JTA’s final release was published on November 6th 2002. For more details see [(JC02].

16

Master Thesis Hendrik Beck

Listing 2.2: Example Source Code Transactions
1 utx.begin();
2 try {
3 doSomething();
4 doSomethingElse();
5 utx.commit();
6 } catch (Exception ex) {
7 utx.rollback():
8 }

Rolling back transactions

Certain errors occuring on execution of an operation within an exception should eventually
lead to rolling back the complete transaction. This can basically be done in any component
involved in the transaction by marking the transaction as having to be rolled back. Also,
exceptions thrown by any participating component within a transaction eventually lead to
a roll-back. According to EJB, checked exceptions dont’t lead to roll-backs while unchecked
exceptions do. Furthermore applications can set to roll-back or not to roll-back transactions
explicitly by using the annotation @javax.ejb.ApplicationException(rollback=true). Further
details can be found in the specification of EJB 3.028

2.5.5 Interceptors

Interceptors are a tool to customize and extend the behaviour of applications at runtime.
They are defined by the EJB 3.0 specification.

Interceptors are Java objects that are implementing a piece of logic or behaviour.29 This
object is never specifically called by application code. Developers can declaratively tell the
EJB container to execute this code whenever methods of session beans or message-driven
beans are executed. Usually, a common behaviour applying for many methods or classes
of an application are recommended to be extracted. This leads to simpler application code
and to a separation of concerns30. It has also similarities with the concept of cross-cutting
concerns and joint points in aspect-oriented programming.31

Listing 2.3 shows an example interceptor class LoggingInterceptor. This interceptor is
intended to extract the concern of logging out of the actual application. The interceptor
method is being called before the session bean call has been made. Within the interceptor
method, this method call to the session bean can now be done. Before or after this call, other
code like logging can be executed. The listing also shows how the interceptor is registered
on the example session bean. It can either be registered on class level, for all methods of
this class, or more specifically on method level. More features exisit, e.g. to make a more
fine-grained selection on registered methods. Interceptors will be used in chapter 5 to separate
the concern of activation out of the enterprise application. This way, a common behaviour
for a set of methods can be achieved without altering the actual application.

28See [(JC06a], chapter 14 "‘Exception Handling"’ on page 355 and following.
29See [MB07], p.346.
30See [Dij82].
31See [Lad03], p.33.

17

Master Thesis Hendrik Beck

Listing 2.3: Example Interceptor Class
1 public class LoggingInterceptor {
2
3 @AroundInvoke
4 public void log(InvocationContext invocation) {
5 logger.info("‘We are right before actual method call!"’);
6 invocation.proceed();
7 logger.info("‘And now the method call is over!"’);
8 }
9

10 }
11
12
13 @Stateless
14 @Interceptors(LoggingInterceptor.class) // either here...
15 public class ExampleSessionBean {
16
17 @Interceptors(LoggingInterceptor.class) // ...or here
18 public void doSomething() {
19 doSomethingMore();
20 }
21
22 }

2.5.6 Annotations

Annotations are a tool to add meta information to source code elements that has been intro-
duced in Java version 5.32 Annotations are used according to listing 2.4.

Listing 2.4: Java Annotations
1 @Annotation(paramater=parameterValue)
2 element (e.g. class, method, field ...)

The annotation itself is implemented as a Java type with the introduced type name @in-
terface. They are widely used to enrich Java source code with meta information that can be
read during run time. Annotations don’t affect the actual byte code but rather are stored as
additional information. This information can be retrieved by the Java reflection mechanism.

Many Java projects provide annotations as a way of configuration. Often XML and
annotations are offered for configuration purposes at the same time, leaving it up to the
developer which one to use. Java EE 5 is an example of a recently released framwork that
offers wide support of annotations throughout the whole project. There, annotations provide
a alternative way to specify deployment descriptor information.

Advantages of annotations are that configuration values are placed right next to the el-
ement in the source code it is related to. This helps to provide intuitively readable code.
Another advantage is that development environments support the developer using in annota-
tions. Since they are actual Java types, tools like code completion can be used.

As a disadvantage annotations are placed within the source code. This requires recom-
pilation if the configuration has been change. If configurations are placed externally, e.g. in
XML files, recompilation of the source code is not necessary.

In practice it’s usually a pay-off between rapid developed readable code and purely declara-
tive configuration in XML files. This pay-off has to be estimated by the individual developer.

32See e.g. [Mica] or [Ull07], p.1301.

18

Chapter 3

Enterprise Content Management

The term Content is the second major topic this thesis deals with. More specifically, this
chapter elaborates on the characteristics of content and what content really is, how it is
managed in enterprises and what special use-cases there are that further characterize content
in the real world. Finally, the standard Java Content Repository will be introduced as it will
later be used during the implementation of a framework that accesses content.

3.1 Terminology

In this section basic terms around the field of content are introduced and defined.

3.1.1 Fully structured data

Fully structured data has already been introduced in section 2.3.1.

3.1.2 Unstructured data

Unstructured data is data that has - from a given point of view - no recognizable or processible
inner structure. A file system for example doesn’t know about inner details of the files it is
storing. A relational database doesn’t have knowledge about binaries it is storing in a BLOB
field. On the other hand, Microsoft Excel knows how to open and interpret the Excel document
that is stored in the file system or in the database. Obviously, the kind of structuredness
changes as the viewpoint changes.1 [Abi97] is also referring to this as raw data.

3.1.3 Semi-structured data

Semi-structured data is often referred that is neither fully and strongly structured nor com-
pletely unstructured. Other definitions, like the one used in here, consult the same definition
as used for fully-structured data but turn it around. One of the most frequently cited sources,
[Abi97] gives the following definition. Its structure was already used for the definition of
fully-structured data, given in section 2.3.1.2

Not pre-defined Unlike relational databases the structure of data doesn’t have to exists at
the time the data is being introduced. The structure is mostly implicit it will evolve
with the introduction of new data.

1See [Abi97], p.1.
2See [Abi97].

19

Master Thesis Hendrik Beck

Implicit Structure information is nested into the actual data. XML is a good example of
semi-structured data. It mixes structural information (the tags) with content. That way,
the structure is implicit, can be reproduced by reading the data and can be changed
by added new data containing new structure information. Also, the responsibility of
delivering the structure is moved to the data itself.

Irregular and incomplete The structure of a given set of data may vary in different in-
stances, e.g. certain fields may be ommitted, other field may be added. This also
means, that semantically identical things (e.g. an address record of a customer) may be
structured differently, e.g. one time as a string, the other time as a tupel.

Indicative The structure guides (indicates) the way the data should look like. It doesn’t
serve as a strong constraint.

Often the terms "‘self-describing"’ and "‘schemaless"’ are used as synonyms for the term
semi-structured.3. A popular way of modelling semi-structured data is to store them in a
hierarchical form representing a labelled graph4. In this form, there is no distinction anymore
between the schema and the data.5

Unstructured data usually occurrs in small amounts, e.g. single files of unstructured
data. Mostly it is embedded into a set of semi-structured or fully structured data. Examples
areas of usage for semi-structured and unstructured data are biological databases, database
integration, multimedia content or the World Wide Web.6

Adding structure to a certain degree to formerly unstructured data, e.g. a plain written
text, allows to significantly increase the quality of query results on that document. This is
often achieved by using XML for enrichring text-based documents with markups information.

The fact, that structure and data aren’t distinct but combined makes exchanging semi-
structured documents very easily exchangeable. A popular example is XML, which contains
the actual data embedded in tags that give information about the structure.

3.1.4 Content

It is hard to find clear and common definitions of what Content really is, neither in IT-related
literature nor in dictionaries7. Commonly it is also reffered to as "‘Media Data"’8. From
this point and together with a look at the occurrences of the word throughout the world of
software and internet, it can be assured that content is something that could be referred to as
media data: videos, songs, free written text, recordings, spreadsheets, PDF documents and
the like. In conjunction with the given definitions of the structuredness of data, it can further
be refined as data, that includes, but is not restricted to, fully structured, semi-structured
and unstructured data.

Sometimes also the term Fixed Content is used. While the structuredness of the data is
still the primary characteristic, this should emphasize that the content is generated once and
then immutable over its complete lifetime. This opposes dynamic content, that is generated
on demand. Nonetheless, due to its nature nearly all the content belongs to the group of fixed
content. Looking at videos, sounds, Office documents etc. it seems to be obvious that most
of them aren’t generated on demand.

3See e.g. [SA00], p.11.
4See [PB97].
5See [KA89], page 1 and 2.
6See [PB97].
7To be precise: the latter of course provides explanations. But they are not very helpful in this context.
8For a good reception of received opinion see here: http://en.wikipedia.org/wiki/Content_%28media_and_publishing%29.

20

Master Thesis Hendrik Beck

3.1.5 Content Management / Content Management Systems

Content Management describes the management of larger quantities of content. Content
Management Systems are specialised in managing non-fully-structured content. Often they
are also specialised in managing the most popular and most likely occurring types of content,
such as XML and HTML documents, Microsoft Office documents or PDF documents.

3.1.6 Enterprise Content Management

Enterprise Content Management, ECM, deals to a large degree with content management but
furthermore attempts to embed content management into enterprise environments. Hence
enterprise content management becomes part of organizational processes and the demand to
meet business goals. The Association for Information and Image Management9 gives the
following definition which is also widely agreed upon as being somewhat offical:

"‘Enterprise Content Management is the technologies used to Capture, Man-
age, Store, Preserve, and Deliver content and documents related to organizational
processes."’10

To some degree ECM is very similar to content management. In large enterprise and
organizations though, many task involved in managing different content become significantly
more difficult due to the mere size of the systems, to large quantities of documents and to
a large number of users accessing this content. Also, for most organizations, big amount of
content data stored on their systems can be seen as mission-critical information. Hence the
priority is set reasonably high.

The amount of content-based data in organization is also rising tremendously in recent
years. Due to technological shifts towards multimedia and internet much more information is
being created and shared around the world. Organization also have much more access to data
that is necessary to be stored might later be retrieved. The introduction already mentioned
[RK05]. It states that about 80% of all information stored within organizations are content
data.

3.2 Typical Use-Cases of Content

So far the term content has mostly been defined through its level of structuredness. In the
context of this thesis it’s important to discuss how content is handled by applications. This
is especially of major interest as this handling differs from the handling of fully structured
data in enterprise application. This section will present some of the important use-cases that
occur in conjunction with content in real-world applications.

3.2.1 Full-text search

Fully structured data in enterprise application is mostly searched by performing comparison
queries on single fields. A striking example is the syntax of SQL which bases on operations on
single fields. A full-text search on the other hand means searching within multiple fields, e.g.
in all fields of a table or, in terms of an object-oriented programming language, in all fields of
an entity. This is also called content-based query.11 With SQL this can only be archieved by

9Abbr.: AIIM. See http://www.aiim.org
10See http://www.aiim.org/about-ecm.asp.
11See [AH00].

21

Master Thesis Hendrik Beck

combining queries on single fields. In content now, the focus lies much more on objects that
contain multiple fields at once. This is often be referred to as a document, emphasizing that it
is more than just a single field. Accordingly, searches are often spanning the whole document.
If for example a certain string would be searched within a book store application, a match
could be found either in the title, in the full-text of the document, in certain keywords or in
the abstract. This is a popular use-case in content applications.

3.2.2 Discovery Querying

As explained in section 3.1.3, semi-structured and unstructured data don’t have a pre-defined
structured that is well known a priori. Hence, queries on content often don’t follow any
predicate logic at all. Rather users are discovering12 the structure and its containing content
step by step, e.g. by querying into the hierarchy of content and querying again based on
the actual data found at the respective position. This appears obvious looking at the fact
that the structure and occurring fields can change anywhere within the structure. This is
a use-case that is mostly performed by humans and hence has implications on the way the
structure is created. It is often supposed to be intuitive and human-readable, e.g. by using
well-sounding names for labels within the graph instead of kryptic abbreviations or the like.
Content application often provide a way to support in creating those structures that make
discovery querying easier.

3.2.3 Searching Binaries

Often searches should not only be performed over text data, as possible with SQL for example,
but also over binary files like PDF documents or Excel worksheets. To be able to do this,
there must be knowledge about the particular file format and about its inner structure in
order to extract text. Relational databases do not support this kind of query per se. Content
management application often have built-in support for searching binary documents. Usually
meta information is used to determine the concrete file format which is then openened and
extracted by special components.

3.2.4 Inexact Querying

In relational databases inexact querying is poorly supported. SQL supports the % operator
to search for the occurence of a string within a text field. Content is rarely exactly specified
information but rather free written text from various sources, data in different languages or
the like. Expected matches are often not only exact strings but rather matches or nearly-
matches on a more semantical level. There are three popular types of inexact queries that
occur in conjunction with content.

• Fuzzy Search This kind of search finds strings that are similar to the original string.
The similarity depends on the respective use-case. The most popular kind of similarity
is the phonetic similarity that finds words, that sound similar to the one originally
searched for. Another example is a search that corrects common spelling mistakes.

• Synonimical Search This kind of search finds words, that have the same or similar
meaning than the one original searched for. This makes especially sense in querying
large numbers of documents that are human-written. The similarity in this case is of a
semantical nature.

12See [PB97], p.14.

22

Master Thesis Hendrik Beck

• Cross-language Search This kind of search finds matches of words, that have the
same or a similar meaning in other languages. This is of particular advantages when
dealing with multi-lingual documents. In internationally created knowledge bases for
example a certain article could have been created in English but not in German. A query
for a German keyword should find the English article though. Without Cross-language
search, no article at all would be found.

3.2.5 Versioning / Merging

Versioning is a popular use-case in enterprise applications, too. But unlike with content, where
individual fields are under version control, enterprise applications tend to create another scope
for versioning, an entity-wide scope. That means that whole business entity objects are under
version control.

Another difference to content is the usage of merging in enterprise systems. In much cases
merging doesn’t make sense for enterprise data. The name of a customer for example should
never be merged from two different changes into a new result. As content management deals
with large textual documents, merging is often necessary in order to allow efficient, concurrent
working on documents.

3.2.6 Internationalization

Internationalization is the possibility to store documents in different languages and to retrieve
it for a certain language. Other features are imaginable to be combined with this, the e.g.
cross-language search introduced earlier.

3.2.7 Summary

Not only does content have different technical attributes, the structuredness, compared to
data in enterprise applications. Especially the handling of the data makes a major difference.
Furthermore these use-cases aren’t supported by relational databases which are the most
often used databases in enterprise applications. This makes clear, that applications of these
use-cases in enterprise application is not trivial.

3.3 Market Overview

3.3.1 Product Categories

Unlike the market of enterprise application frameworks the market for content management
solutions is much more diverse. It could roughly be separated into the following categories:

• Custom applications that are specialized in addressing some special content use-cases.

• Content Management Systems They mainly evolved out of content-centric internet
applications. These products are characterized by providing specialiced maintenance
user interfaces (eg. Rich Text editors for HTML content), the ability of generating
output in different formats and the integration of simple implementation logic e.g. to
cover publishing workflows or the like.

• Enterprise Content Management Systems As mentioned about in section 3.1.6
these system cover complex content lifecycles and are integrated in complex enterprise

23

Master Thesis Hendrik Beck

environments. Example products of this category are EMC Documentum, Microsoft
Sharepoint or Day Communique.13

3.3.2 Java Content Repository

Java Content Repository (JCR) is a standard developed under the Java Community Process14

as JSR-170. Its first version was finalized in 2005. It was the first official standard to be passed
dealing with content access. It allows application developers to use a standardized API that
hides from the underlying storage implementing the standard as well as of all technical details
behind it. As JCR has been chosen to be used in this thesis, it will be presented in further
detail later in section 3.4.

3.4 Java Content Repository

This chapter introduces Java Content Repository, a standard which was elaborated, defined
and released under the Java Specification Request as JSR-17015. At its core, it specifies an
abstract repository model inteded to store content data as well as a Java API as the only
means to access the underlying repository. JCR is widely seen as the first successful attempt
to introduce a standard API for accessing content.

3.4.1 History

In 2002 an expert group led by David Nuescheler began to work on JSR-170, the first version
of what later became popular as Java Content Repository. That expert group consisted
of 22 companies and organizations, e.g. Day Software, Apache Software Foundation, IBM,
SAP, Hewlett-Packard, BEA, Sun and Software AG. It shows the recognition of this standard
throughout the industry of companies dealing more or less with content storage.

JSR-170

On 17th of June 2005 the final specification of JSR-170 was released carrying the version num-
ber 1.0. It mainly contains a specification document and a set of Java APIs. The reference
implementation has been moved to Apache Software Foundation under the name "‘Jackrab-
bit"’16 mainly to provide a living open-source implemementation that can easily be adopted.
Apache Jackrabbit is still the most popular open-source implementation of JSR-170.

JSR-283

In fall 2005 the work on JSR-283 began, popularly known as "‘Content Repository For Java
Technology API 2.0"’ or short "‘JCR 2.0"’17. The early review phase was closed in October
2006, the standard is currently planned to be released in January 2008. So by the time of
writing JCR 2.0 is only available in a non-final version with no products providing support
yet. For this reason JCR 2.0 will not be taken into account in this thesis. The basic principles
however will be the same and improvements or introduction of new features will, although
helpful in practice, only have a minor impact on work and statements of this thesis.

13Links can be found in appendix A.
14See http://www.jcp.org.
15The specification can be found at [(JC05a].
16See section 3.4.9 for a detailed introduction on Apache Jackrabbit.
17The specification process can publicly be followed at [(JC05b].

24

Master Thesis Hendrik Beck

Figure 3.1: Hierarchical Repository Model of JCR

3.4.2 JCR Concepts

Roy T. Fielding summarizes in [Fie05] that JCR is a "‘generic application data super store
[that] is expected to manipulate and store structured and unstructured content, binary and text
formats, metadata and relationships"’. It further provides integrated content services such as
"‘uniform access control, locking, transactions, versioning, observation, and search"’ 18.

JCR defines a set of Java interfaces and is intended to be implemented by various products.
Due to the assumption that different use-cases require a different set of functions made on
the repository, a system of levels was introduced to describe which set of functions a certain
product offers. E.g. a news ticker system accessing the news it displays from a JCR-compliant
repository only needs reading access. On the other hand a content managament back-end
application will most likely need read and write access to allow users to add, edit end delete
content. The concrete system is defined as follows:

1. Level 1: The implementing product offers read access like browsing the content struc-
ture, reading the values of stored content and export the content. In addition it allows
to search the repository using XPATH.

2. Level 2: In addition to all Level 1 functionalities it also offers write access, like adding
and deleting content and maintaining the actual content. In addition, custom node
types can be defined and used. Level 1 is a complete subset of Level 2.

3. Optional features: An additional features was specified and may be implemented
independently:

• Transactions
18Taken from [Fie05], page 4.

25

Master Thesis Hendrik Beck

Figure 3.2: UML diagram of Item, Node and Property of the JCR Repository Model

• Versioning

• Observation

• Locking

• SQL

3.4.3 Repository Model

The basic concept in JCR is the hierarchical representation of data, similar to XML. Starting
with a single mandatory root item, every item has a name and may have child items.19 Items
themselves are seen as abstract and thus are either nodes or properties, both inherited from
item. Nodes can have further child items whereas properties cannot. Properties have a certain
type and a value. The types are defined in the specification and contain most of the primitive
types known from programming languages, such as String, Integer or Stream.

In other words, nodes are used to structure the stored data, properties are used to store the
actual data themselves. Visually these items are building a tree where nodes are the branches
and properties are the leaves. Every item can be absolutely addressed by going down the tree
starting at the root item and adding up the names of the visited items to form the address.
As the slash symbol is used as delimiter between the single names, the resulting address looks
pretty much like a URL. One of the properties in figure 3.1 can for example be addressed by
/Customers/Smith/City. In practice, an important task in designing JCR-based applications
is the definition of a structure that leads to speaking addresses and thus intuitive trees.20

The following itemization lists the most important terms used by the JCR specification:21

Item, node, property The elements forming the hierarchical tree of data are called items
by being further specified by one of the types: node or property.

Repository A repository represents one instance of a content repository, e.g. on a server. It
can contain several workspaces. It can be compared with one installation of a database
server.

19See figure 3.2.
20This has already be mentioned in section 3.2.2.
21See also figure 3.1.

26

Master Thesis Hendrik Beck

Workspace A Workspace has one mandatory root node which then can contain a tree of
items. Workspaces can separate different kinds of content on the highest level. It can
roughly be compared with databases within a database server.

Session Unlike the terms repository and workspace, which are used on a conceptual level, the
term session is rather technical. Sessions can be seen as handles onto workspaces. When
working with the JCR API, a session handle has to be retrieved from the repository.
Every client accessing the repository has to obtain a session first.

3.4.4 Node Types

Node types allow to define and contraint items in a similar way a database schema defines
the structure of databases22, tables and fields23. Basically, every node must be assigned one
so-called primary node type on creation. This assignment is immutable over the life time of
a node. Within that node type definition, it is predefined which properties and which child
nodes the node has. Unlike the very explicit and static schemas used in the relational model24,
JCR allows more flexibility.

Two different types of nodes types exist in the terminology of JCR: primary node types
and mixin node types. Every node has exactly one primary node type assigned. Node types
can be inherited for definitions of new node types, while every node type directly or indirectly
inherits from nt:base. This is comparable with inheritance hierarchies in Java, where every
object is directly or indirectly derived from Object. Additionally none or more mixin node
types can be assigned. That way, the basic behavior of a node is being described by its
primary node type while eventually existing mixin node types can add additional behaviour.
Mixin node types can be compared with interfaces in Java. Every class inherits from exactly
one super class, but can implement none or multiple interfaces.

The JCR Specification defines a set of built-in node types, primary node types as well as
mixin node types. These are intended to provide a basic functionality out-of-the-box and are
also used by the specification itself to solve fulfill technical requirements. For example some
of the built-in primary node types are nt:folder, nt:file or nt:resource. They are supposed
to be used whenever content should be stored that is semantically close to folders, files or
resources in the common sense. The built-in mixin node type mix:versionable is used by the
specification to mark an item as being versionable. This example also outlines that primary
node types are widely used to define semantic characteristics whereas mixin node types can
add rather technical characteristics.

Looking again the built-in primary node types, it first looks like they are intended to
minimize the needs to define custom node types for the most popular use-cases25. But there
is a big advantage coming along: as JCR defines an open standard tools will evolve (and in
fact have been evolved already) that can handle content repository generically, like the well-
known Windows Explorer can be used to browse file systems. But these tools may be able
to handle nodes of built-in node types in a specific (and hence in a better) way, increasing
their usability. In practice, this already happens with a lot of tools making it advisable and
best-practice to involve built-in node types as much as possible in customized content models.

22More generally, the term "‘schema"’ is widely used to define a certain domain specific data model, e.g.
for for XML or even in object-oriented programming. In these cases, the term "‘logical schema"’ is also used.

23A very spongy comparison could also be made to sets of meta-data associated with certain file types, e.g.
image files may carry meta-data like width, height and resolution.

24Compare the definitions of fully structured and semi-structured data, specifically indicative vs. constrain-
ing structures. See sections 2.3.1 and 3.1.3.

25E.g. a storage system for files could easily be created by just using the build-in node types nt:folder and
nt:file.

27

Master Thesis Hendrik Beck

It has to be noted, that JCR also allows some operations at runtime. E.g. mixing node
types can be assigned on a per-case basis during runtime which also adds some flexibility to
the content model.

3.4.5 JCR API

The base package of the JCR API is javax.jcr.*. It defines classes and interfaces to connect
to a repository, to access the content strucure, to add, edit and delete content, to query the
repository and to use the optional features (if existant for the actual implementing product).

All access to the repository is done using this Java API. As the underlying storage is
completely hidden by this API there is no way around, e.g. to access the database directly
(in fact, it is even unknown whether a database is the underlying storage, it could also be the
file system or a connector to another system). On the upside, applications written on-top of
this API don’t have to care about storage details and can be used with every implementation
26. Also, driver issues, connection establishing and the like is also hidden. These became
administration tasks in JCR, done by the administrator of the repository. The only necessary
remainder is code to lookup the repository, which in JEE application can be simplified by
using JNDI or dependency injection.

3.4.6 Querying

The default query language in JCR in XPath27. XPath was originally created by the W3C28

and intended to access parts of XML documents but due to the similarities between the
hierarchical repository model of JCR and hierarchical structure of XML XPath was chosen
as the query language of choice. As an optional feature, JCR specifies a customized dialect
of SQL29.

3.4.7 Versioning

Versioning allows to restore earlier states of data stored in the repository. Versioning can
be enabled for certain nodes (at design time or runtime) by assigning the mixin node type
mix:versionable. The version feature in JCR was designed according to the specification made
by JSR-143 about "‘Workspace and Configuration Management"’30 Versioning in Jackrabbit is
implemented to show behaviour similar to typical versioning systems like CVS and Subversion.
The JCR specification also covers a mechanismn to merge concurrently edited content.

3.4.8 Transactions

JCR specifies transaction support for repositories according to the Java Transaction API31

This allows to integrate JCR into environments and use-cases where transactions are necessary
to ensure data consistency. Therefore JCR also specifies both container-managed and bean-
managed transactions. See also section 2.3.5 about transactions.

26Here, the compliance level has to be taken into account. An application written for a Level-2-compliant
repository, in other words a system that does write operations on the repository, can not be used with a
Level-1-compliant repository. Although the API is the same the Level-2-related operations of the API don’t
invoke any actions.

27The specification of the current version 2.0 can be found here under http://www.w3.org/TR/xpath20/.
28The World Wide Web Consortium. Its homepage can be found under http://www.w3.org.
29See also section 2.3.4 about SQL in relational databases.
30See [(JC01].
31See [Micb].

28

Master Thesis Hendrik Beck

3.4.9 Apache Jackrabbit

Apache Jackrabbit is the official reference implementation of JCR and remains until today
the only fully featured available open-source implementation of notable maturity. By the
time of writing the newest version carries the number 1.4. It implements the full specification
of JSR-170 while preparations for the upcoming version JSR-283 are already under way.
Apache Jackrabbit reached an decent community as gained a notable recognition amongst
tools vendors throughout the industry. Several case studies approve that Jackrabbit is used
in large-scale production projects all over the world.

3.4.10 The mapping framework Jackrabbit-OCM

Jackrabbit OCM32 is a sub-project of Jackrabbit that has become part of the official release of
Jackrabbit with version 1.4. It provides a framework that allows to map content accessed via
JCR into Java objects. Besides simple mappings of JCR properties into Java attributes it also
allows more complex mappings like inheritance or polymorphism. A component called Object
Content Manager can connect to content repositories through the JCR API and perform
persistence operations on content. This way, OCM allows to persist Java object into JCR-
compliant repositories and hides from the details of the JCR API. Due to its capabilities to
map content into Java objects, Jackrabbit OCM will be used later in chapter 5.

32More information about Jackrabbit OCM as well as further details about how to set it up and use it can
be found on the project homepage under http://jackrabbit.apache.org/ocm.

29

Chapter 4

Implementation Models and Decision
Process

So far enterprise applications and content applications as well as their different characteristics
have been introduced. This chapter will now make use of this knowledge in order to describe
implications on design decisions in software development projects.

The goal of this chapter is to introduce different implementation models that can be
applied for given project situations. A proposed decision process will support architects
and application developers with guidelines and evaluation methods to determine a suitable
implementation model.

4.1 Problem Setting

The problem setting as well as the whole topic of this thesis is coarsely located in the field of
modern business applications. Although the information given in this chapter claim to have
a wide scope of validity in terms of different application frameworks, platforms, technologies,
programming languages and the like, it should be clear, that the thesis has been developed
in the field of Java EE 5 and JCR. The information should be taken with care with rising
technology distance, e.g. when trying to apply the principles to mainframe applications or
embedded real-time systems.

Figure 4.1 shows an business entity object Customer as it would be identified in an early
project phase as part of a larger entity model. This object contains certain attributes like
an ID, a name and an address. At that stage of development progress all entities are still
independent of technology-specific details.

In a further step, e.g. the next project phase, some technology have to be made in order
to be able to design the architecture and start implementing the application. To support this
decision will be the essential outcome of the current chapter.

Please note, that it’s not necessary to really be in that early project phase. The author
just wants to emphasize that the information given in this chapter will have fundamental
influence in technological decisions. This is much less obvious when talking about existing
projects. Other scenarios like refactoring situation would be suitable as well.

4.2 Implementation Model Decision Process

The decision process developed during this thesis is intended to support architects and ap-
plication developers in determining a proper implementation model or architectural strategy

30

Master Thesis Hendrik Beck

Figure 4.1: UML Analysis Model of Business Domain and Entity Object ’Customer’

respectively. A rough overview of this process is illustrated in figure 4.2. Certain factors are
influencing the decision. Different implementation models are the outcome of the decision.
Further refinements of this process will be presented during this chapter.

4.2.1 Related Work

In the context of software engineering two methods exists that are similar to the decision
process introduced in here. The first one is the ATAM, the Architecture Tradeoff Analysis
Method1. It has been developed by the Software Engineering Institute (SEI) of Carnegie
Mellon University2 and is intended to provide "‘software architects a framework to reason
about the technical tradeoffs faced while designing or maintaining a software system"’ 3. On
top of ATAM the SEI has built another model in order to quantify architectural decisions
from a rather economic point of view. This is CBAM, the Cost Benefit Analysis Method4,
and it "‘causes the stakeholders to quantify the benefits as well as the costs, dependencies, and
schedule implications of architectural decisions"’ 5.

The process elaborated on in this chapter can be seen as an extension to both models.
Especially the methods introduced in section 4.4 are similar to the methods proposed in the
context of CBAM. Also the basic intention of both the process of this thesis and of CBAM,
are similar: the attempt to estimate total costs as well as benefits of all possible options in
order to be able to compare the total sum of benefits minus costs. This is intended to lead to
the best option for a given situation.

4.2.2 Influencing Factors

Several different factors would have to be taken into account in order to determine the right
implementation model for a given problem setting. This thesis will not investigate all of them.
Nonetheless here is an incomplete and exemplary list:

1See [Unia].
2See http://www.sei.cmu.edu.
3See [RK01]. Furthermore see [JA] for more information about ATAM.
4See [Unib].
5See [JA01].

31

Master Thesis Hendrik Beck

• Formal functional and non-functional requirements as officially collected during analysis.

• Existing knowledge within the development team.

• Existing IT landscape.

• Political decisions, e.g. which vendor to prefer over another.

• Favours and gut feelings of architects and team leads.

However, only a small number of factors will be incorporated into the decision process.
These are factors that are directly related to enterprise applications, content applications and
to the data processed in these applications. The concrete factors will be explained in section
4.3.

4.2.3 Implementation Models

Theoretically there are lots of possible implementation models to choose from and even more
architectural decisions to make for a given problem setting. This thesis focusses on the
following options which are also part of the illustration in figure 4.2:

Enterprise Application The outcome of the decision process is that the application will
be implemented as an enterprise application as outlined in chapter 2.

Content Application The application will be implemented as a content application accord-
ing to descriptions in chapter 3.

Hybrid Implementation Both, an enterprise application and a content application will be
used for implementation. They are co-existing besides each other.

The first two implementation models will also uniformly be referred to as single-system
implementations. In the following section the differences between enterprise and content
applications will be presented in order to find factors that are influencing the decision process.

4.3 Enterprise Applications and Content Applications

Chapters 2 and 3 introduced the basic theory of enterprise applications and content appli-
cations. If the outcome only consists of these two combinations then it is necessary to find
the factors that decide over one or another of them. For that reason a comparison will be
done in order to find the clear points of distinction between both kinds of applications. These
points will become the individual influencing factors in the decision process model. Other
characteristics can then be ignored.

4.3.1 Differences between both kinds of application

Three factors have been identified that clearly distinguish both kinds of applications:

• The structuredness of data that the systems mostly work with.6

• The characteristics of the handling of that data. This means the way that data is
created, structured, organized, retrieved and queried.7

6See section 2.3.1 about structuredness of data in enterprise applications and section 3.1 about structured-
ness of content data.

7See sections 2.3 and 3.2.

32

Master Thesis Hendrik Beck

Figure 4.2: Decision Process - Influencing Factors, Implementation Model as Outcome

• The implementation logic that the systems need to realize in order to work properly.8

These three factors are the only factors that clearly distinguish both kinds of data. Table
4.1 lists them and their individual values for both kinds of systems. In order to classify a
system to either one of the two kinds it is necessary to determine their values according to
the three factors.

Enterprise Applications Content Applications

Structuredness of data Fully-structured Fully structured, semi-
structured, unstructured

Implementational logic
Complex, business-oriented logic
implemented with programming
languages

Specialised content features, no
complex business logic, data-
centric

Handling of data Fully-structured querying paradigms
"‘content use-cases"’, full-text
search, versioning, international-
ization

Table 4.1: Distinction between Enterprise Applications and Content Applications

4.3.2 Implications on Design Decisions

Three factors have been identified that clearly distinguish enterprise applications and content
applications. Consequently, these three factors are of major interest when deciding which
implementational model to choose as they are the only remaining variables. All other factors

8See section 2.2 about business logic in enterprise applications, section 3.1 and 3.2.

33

Master Thesis Hendrik Beck

Figure 4.3: Decision Process Extended by Influencing Factors

are then independent of the choice of technology. Figure 4.3 illustrates a modified input layer
of the decision process.

The implementational logic that is required to be implemented in the target application
differs from the other two factors. It is a rather external requirement that explicitly exists
after requirements engineering has been done for the application. Roughly speaking, either
a complex business-oriented logic as introduced in section 2.2 has to be implemented or not.
Hence this factor doesn’t have to be examined any further, it is seen as an outcome of the
project’s requirements analysis.

The two other factors need further examination in order to find out what role they are
playing in the decision process. They are both of major interest in this thesis as they are
mostly characterized by data. They can also be called data-driven factors.

4.4 Qualitative and quantitative methods

The previous section determined that data-driven factors are playing a major role in the de-
cision process. It is necessary to characterize the data and the target application according to
table 4.1. This section will propose three methods that should guide responsible architects in
a concrete way to find the right answer necessary for the decision process. First, a terminology
about different kinds of data is introduced:

• Enterprise Data Fully-structured data that conforms to the characteristics of enter-
prise applications as explained in chapter 2.

• Content Data Mostly semi-structured or unstructured data that conforms with the
characteristics introduced in chapter 3. Especially the special use-cases that might be
applied for content data is of major interest.

• Data Type This term is used to generically express which kind of data a particular
attribute is of.9

The important task within the decision process is to determine to which kind of data
the attributes given in the entity objects are belonging to.10 Usually different kinds of data
types exist within the same entities. First it has to be figured out how the relations between

9It should not be mixed up with the traditional meaning in programming. It’s a more semantical classifi-
cation of data used for the purposes of this thesis.

10Again, this is not restricted to projects that are in early stages, it also applies for existing application.

34

Master Thesis Hendrik Beck

Survey Method - Binary Values - Entity ’Customer’
Full-text Search Binary Search Versioning I18N

id 0 0 0 0
name 0 0 0 0
customerGroup 0 0 0 0
address 0 0 0 0
image 0 0 1 0
profile 1 1 1 1
calculations 1 1 1 0
freeTextDescription 1 0 1 1
Total 3 2 4 2 11
% of all attributes 38% 25% 50% 25%

Table 4.2: Example result of the Survey Method using binary values

both data types is at project level because technological decision have to be made at project
level, too. In case the mixed implementation will be chosen, the particular data type of every
attribute becomes important. In the following three different methods are proposed to achieve
these results. They are able to achieve both results as follows:

1. To get an overall result for the whole system in order to be able to decide which model
is suitable.

2. In case the mixed model will be chosen, then these methods also deliver results for
individual attributes. They help to decide where the attributes will be implemented.

4.4.1 Survey Method

This method rests on explicit valuation of every single attribute existing throughout the
application. In section 3.2 use-cases have been introduced that are necessary to be done with
content data but aren’t possible to achieve with standard persistence mechanisms of enterprise
applications. On the other hand, this also means that it is might be required to perform those
use-cases upon a certain amount of the data.

Those use-cases can now be taken as a checklist that has to be applied for each data
attribute. It can be imagined as answering the question "‘How desirable would it be to be able
to perform this use-case for this attribute?"’.

There are different ways to perform this survey, each requiring different amounts of effort,
providing a different level of granularity and each leading to slightly different results. The
recommended ways to perform it are explained in the following:

• A sheet has to be created like the one in table 4.2. Only binary values like 0 and 1
or yes and no respectively are used. The numbers for every attribute are added up
to a individual total sum. The result would be how many content use-cases would be
required for this particular attribute. Based on that the attribute could be classified
as either enterprise data, when having a low individual total, or as content data, when
having a high number. A general problem here is, that it’s difficult to tell an exact limit.
This method assumes that every content use-case has the same importance as well as
the same level of desire to the customer as it is impossible to assign different weights.
A sample result is illustrated in table 4.2.

35

Master Thesis Hendrik Beck

Survey Method - Weighted Values - Entity ’Customer’
X Full-text Search Binary Search Versioning I18N

X 2 3 2 5
id 1 0 0 0 0
name 1 0 0 0 0
customerGroup 1 0 0 0 0
address 1 0 0 0 0
image 1 0 0 1 0
profile 5 1 1 1 1
calculations 3 1 1 1 0
freeTextDescription 2 1 0 1 1
Total 18 24 22 30 94

Table 4.3: Example result of the Survey Method using weighted values

• In case either use-cases or attributes or both should be weighted differently, numbers in
a certain range, e.g. from 0 to 5, can be used. That way either the importance of certain
features or the individual factor of certain attributes could be taken into account. A
sample result can be found in table 4.3.

• Another kind of weighting could be done on entity level. That way the importance
of certain entities over others can be taken into account. This is especially important
in estimating the content factor for the whole system. A central and important entity
might likely be to influence the total result more than unimportant, minor entities.

This method is intended to be tailored for individual requirements on a per-project basis.
Furthermore, throughout this thesis not enough results could be collected to give further rec-
ommendations or experiences about concrete numbers. Generally speaking, the more complex
the method is, the better the quality of the results can be but also the more complex it will
be to perform the survey.

The survey method delivers results on different levels: on data level, on entity level and
on system level:

• Data-level results show which attributes should are classified as enterprise data or as
content data and hence lead the decision process which attribute is modelled into which
of the two systems.

• Entity-level results decide whether a certain entity contain a significant amount of con-
tent or not.

• System-level results help to estimate which approach is the right one. A very low amount
of content data leads to a realization of the system as an enterprise application, a very
high amount leads to a content application. Numbers somewhere in the middle lead to
a mixed approach.

Finally it is necessary to make decisions based on concrete numbers or percentages. For
example there could be a rule like "‘If the survey method delivers a content ratio of less than
25, the system would be realized as an enterprise application. Above 75, it would be realized
as a content application. In between the mixed approach would be done."’ Those numbers are
hard to tell and depend very much on the concrete project situation. Also, during this thesis
couldn’t be enough experience collected to be able to give those numbers.

36

Master Thesis Hendrik Beck

4.4.2 Data Type Method

This method takes the data type into account. The following test shall be performed for every
attribute:

1. If the data type is binary11 then this attribute is most likely content. A high number
has to be assigned, e.g. 10.

2. If the data type is Text then it might be content. This is because in practice content
often appears to be unstructured or semi-structured, but text-based. Examples are
all kinds of free text on web pages, newspaper, free text descriptions and the like. A
medium number has to be assigned, e.g. 4.

3. Other data types are unlikely to be content. A 0 has to be assigned.

Attention should be paid to the difference of data types on different levels. Best suited
for this test are analysis diagrams as they usually contain the data type from a pure business
point of view. In design diagrams and implementations the data type is often replaced due to
technical constraints, patterns, performance issues or something like that. Finally, it is not
recommended to use data types from representations in databases. On this level data types
often get converted. For example the Customer entity has an association to a Customer-
Group. In analysis as well as in design and implementation this is always recognizable as an
association. In the database, this most likely gets converted, e.g. to a String representing a
foreign key. So higher levels are more recommended to be used for this test.

The downside of this method is that the results delivered don’t allow precise estimations.
But then again this doesn’t require human actions, it can very easily be automated (e.g. by a
Eclipse plug-in or Ant task). Also, the information available in early-staged analysis diagrams
(like the example Customer diagram given in this chapter) is sufficient to perform this test
because only the data type is required to perform this test. Hence it can be of great value to
support decisions of large projects in early project phases. It is imaginable that this test can
continuously deliver a current estimation of the whole system.

4.4.3 Semantic Method

This method is similar to the Data Method but aims for existing projects rather than projects
in early stages. It is also possible to automate the execution of this method. If applied for
existing projects it can deliver valuable information supporting refactoring decisions.

The basic idea of this method is to find data that is only stored and displayed but not used
within the business logic. Looking at a great number of content data it is outstanding that
content data are very likely only used to be displayed e.g. in backend systems for maintenance
purposes or on websites for presentation purposes.

Tracking down to a level that is analyzable, this fact can be described as the non-occurrence
of content-data within the business logic. An implementation of this method has to follow
each and every attribute and check whether business logic code make usage of this attribute.
Logically a very good approximation should be possible.

The obvious downside of this method is that it is very hard to implement. Some of the
problems are:

11This of course has to be substituted for the concrete model or programming language, e.g. replace it
with byte[] or InputStream when working with Java or to the right data type when working on a platform-
independent level.

37

Master Thesis Hendrik Beck

• Due to programming techniques like polymorphism it might be hard to reliably identify
each attribute within the source code.

• Depending on the architectural attributes might be transformed into other objects for
some time, e.g. into data transfer object in order to be transferred between component
or layers. That makes it hard to track.

• Modularization makes it very hard to track dependencies and occurrences. Recent trends
to foster modularization and de-coupling worsen this problem.

It can be said that this third method is rather theoretical than a pragmatic approach that
is ready to be used. Nonetheless, it provides further information about the nature of content
data that might be useful and important at some point.

4.4.4 Implications and Summary

Figure 4.4: Methods deliver results to support the decision process

The three methods introduced in this section lead to qualitative and quantitative results
about the data required to be processed within the system. Based on those results decision
about the right model of implementation can be made. They further lead to documented
results about the decision process and avoid decisions that are made just upon experience of
architects.12

But the results not only lead to global architectural decisions. The next section will show
that in case of hybrid implementations it has to be decided into which a particular attribute
should be modelled. The results of the methods can also help with that decision. In summary,
the two different kinds of results are delivered. They are also illustrated in figure 4.4.

• Individual Results Individual results are results per data attribute that are being
documented while performing the analysis led by the methods. They indicate whether
a particular attribute is either an enterprise date or a content date. They are of value
if later during the decision process has to be decided into which system this date has to
be modelled.

12This does not imply that it can replace experienced architects. It should rather prove decisions that were
otherwise made of pure intuition and probably without being documented.

38

Master Thesis Hendrik Beck

• Global Results Global results aim at supporting the architectural decision, i.e. they
are influencing the implementation models as outcome of the core decision process. As
individual results delivering the type of data for each and every date individually, the
global result can be seen as the total sum of the individual results. This leads to global
assumptions e.g. on how much of all data belongs to the category of enterprise data
and how much belongs to content data.

4.5 Results of the decision process

Figure 4.5: The complete decision process model

Figure 4.5 shows the complete decision process. Three influencing factors supported by
the proposed methods support the decision process in order to find the proper model of im-
plementation. If a hybrid implementation model is chosen, the methods also support the
required separation of data. This section gives conclusions about the implementation models
and shows that integration of data becomes a problem if a hybrid model has been chosen.
This thesis will focus on cases with heterogeneous data and especially on hybrid implemen-
tations. Single-system enterprise application will be taken into account as a reference point,
e.g. for costs behaviour which will be introduced in section 4.6.3. Besides that, single-system
implementation in general will be ignored as tasks, problems and challenges involved in build-
ing single-system application are out of focus. They are also widely covered by available
literature.

4.6 Hybrid implementations

In hybrid models, enterprise application and content application are running concurrently.
First, the data have to be separated and modelled into either of the two target systems. This

39

Master Thesis Hendrik Beck

can be determined by the individual results of the methods proposed in section 4.4. Chapter
5 describes the implementation of a hybrid system including a way to seperate the data.

4.6.1 Reintegration

A major issue when choosing the hybrid implementation model is the integration of both
systems. Data that has, from a business point of view, been identified to belong to the very
same business entity is now separated and might be located within two physically separate
storages. The actual need for integration depends on the requirements. Different cases are
possible, ranging from no necessary integration up to high integration with a lot of integration
points. The degree of required integration is called the Integration Complexity.

4.6.2 Integration Complexity

The Integration Complexity denotes the overall complexity of integration that has to be done
and is influenced by the following:

• The number of single integration points. The more integration points the higher is the
integration complexity.

• The difficulty and maintainability of the implementation of certain integration tasks.
This is the initial and ongoing effort that has to be put into the integration. The more
effort that has to be put into integration over the complete software lifetime, the higher
is the integration complexity.

• The degree of reusability of certain pieces of integration code for other integration points.
The more single points of integration are reusable for other integration points, the lower
is the integration complexity.

The higher the integration complexity is the higher the resulting costs will be. Specific
costs are highly depending on the particular project but there is a tendency that resulting
costs are rising directly proportional to the integration complexity. This problem only belongs
to hybrid implementation models.

4.6.3 Cost development in hybrid implementations

The rationale of choosing a hybrid implementation is that required content features can basi-
cally be used out of the box. If choosing an enterprise application only, these content features
would have to be implemented. This leads to two conclusions about cost development. They
are also illustrated in figure 4.6.

• Using an enterprise application, the content-related cost drivers are mainly the num-
ber and the difficulty of the implementation of content features. This means that the
content-uses introduced in section 3.2 have to be implemented in the enterprise appli-
cation. In the author’s experience these costs are traditionally high. Nevertheless, as
the approach is straight-forward starting with a standardized enterprise applications,
there is no extra initial effort that has to be put in up-front. In the diagram this can be
recognized as the line starting from the origin without any intercept on the y-axis.

• Using a hybrid implementation model, the content-related cost drivers are mainly the
integration complexity. This is the effort that has to be put into the system to bring
data together that originally belonged together. This has been elaborated in section 4.1.

40

Master Thesis Hendrik Beck

In the author’s experience these costs tend to be lower than the costs of the previous
point. But significant initial effort has to be put into setting up the hybrid system. This
can be recognized in the diagram as the line having a rather big intercept on the y-axis.

Figure 4.6: Costs development in relation to content features and integration complexity

Depending on the amount of content-data within the application and depending on the
integration complexity, different decision are preferable. The diagram shows, that with low
amounts of content data, it is recommended to use an enterprise application and add certain
features by hand. At a certain point, the costs necessary for that even out with the initial
costs necessary to set up a hybrid system. This is the reason why the Survey Methods tries
to estimate the number of content features as well as weighted total numbers for content
features. E.g. features, that are known to be costly to implement in enterprise applications,
could get a very high weight in the survey method analysis.

4.6.4 Types of Initial Costs

Initial are now further be specified in order to eventually reduce individual cost factors.

• Content application environment Hybrid implementation models require a second
environment to be set up. This means to actually introduce a content management
application including steps like evalution, aquiring know-how and installation on test
and production systems. Furthermore administration and maintainence, e.g. taking
care of upgrades and the like, is required over the whole lifetime. Depending on the
product, licence fees and maintenance costs can also be significant. This group of costs
is not likely to be reduced.

• Developer Know-How Developer know-how and experiences must be available for
each technological field that is being worked on. While know-how in enterprise appli-
cations might still be widely available, know-how in content applications and content
integration is rare.

• Time-to-market This is the time required to deliver a solution. It also includes the
time necessary to create prototypes and the like.

41

Master Thesis Hendrik Beck

4.6.5 Maintenance Costs

Another type of costs ocurring in software development is the costs required for maintenance
over the whole application lifecycle. Due to various estimations about 50%13 or more of the
total development costs are required for maintenance after the initial version of the software
was finished. Re-integration of data as well as the implementation of content features in
single-system enterprise application can generally be seen as an increase in complexity or,
alternatively, as an increase of initial development effort.

[BDKZ93] states that the complexity of a software systems directly influences the expected
maintenance costs. Barry Boehm developed in [Boe81] a basic equation to estimate yearly
maintenance costs, which is

Y earlyMaintenanceEffort = MaintenanceFactor(InitialEffort ∗AnnualChanges)

This formula shows the direct influence of initial development effort on expected main-
tenance costs. Together with the massive estimations of maintenance total costs, there is
a similarly massive potential of reducing costs lying in the reduction of initial development
effort.

4.7 Conclusion

Figure 4.7: Cost requirements for implementation

This chapter introduced the different implementation models enterprise application, con-
tent application and a hybrid model implementing both application types. It also showed
that the data required to be processed within the target application is mainly influencing the
right model of implementation. Further it was made clear that costs in enterprise applica-
tions rise with the number of content features that have to be implemented while the costs
of hybrid implementations rise proportional to the integration complexity. Additionally there
are significant intial costs for setting up the hybrid environment.

The next chapter of this thesis assumes a scenario with a hybrid implementation model
and a high integration complexity. Based on that a solution will be presented that applies

13See e.g. [BDKZ93] and [All].

42

Master Thesis Hendrik Beck

the decision process and implements a hybrid model. Based on the cost behaviours presented
in the previous section, the following results would be recommended as an outcome of the
realization:14

• Lower the initial costs where possible. Some factors might not be reducable, other might
be.

• Better scaling along with integration complexity. The best case would be to eliminate
dependency on the integration complexity completely.

• Reduce complexity of the actual application in order to reduce maintenance costs.

14Figure 4.7 illustrates the requirements.

43

Chapter 5

Application of the Hybrid Persistence
Concept and Prototypical
Implementation

The previous chapter developed a decision process leading to different implementation models.
The hybrid implementation was identified provide better cost behaviour on systems required
to process both enterprise data and content data. Nevertheless, its initial overhead as well
as the re-integration of data was identified to significantly raise the costs. This led to the
requirement to implement a solution that reduces costs in hybrid implementations.

This chapter will introduce a user story to set up an example environment to serve as a
demonstration ground for both the decision process and for the solution to be implemented.

5.1 User Story

The user story introduces the virtual company Bluth Inc., founded by the glamourous Bluth
family. Bluth Inc. sells different products over the web and uses a small Java-EE-based
ERP1 system for managing products and customers. As the company is having a web-based
shopping platform, it wants to provide visitors with more information that just the name and
the price of their products. Thus Bluth intended to maintain descriptions, technical data,
the manufacturer name, a set of images and a PDF data sheet within their master data. The
existing search function on the website should be modified so that search terms are also found
in the new fields as well as occurences in the PDF data sheets.

As the Bluths are estimating the high value of customer retention they decided to add
certain information to the master data of their customers. For example they wanted to
add a free text description and a PDF profiles to be able to better keep track of customer
developments.

The very same time the Bluth company decided go take the plunge and start selling prod-
ucts overseas. Of course this requires them to make a lot of data available in other languages.
While the website itself is capable to work with multiple languages their master data is not.
Hence a way should be found to make data within their ERP system internationalizable.

Gob Bluth, the CIO of the Bluth company, has mentioned that he highly appreciates
efficient maintenance interfaces. Hence it should be possible to maintain all the data within
the very same user interfaces. It would not be acceptable to switch between applications when
maintaining master data of products and customers.

1Abbr.: Enterprise Resource Planning system.

44

Master Thesis Hendrik Beck

In the near future the company also wants to join another business segment. The Bluths
want to act as a content syndication provider and offer their extensive product master data
to other companies. Most likely this will be realized as a web service application.

The data that are intended to be added to the application smell to a certain degree
like content data. This chapter will apply the decision process to evaluate that. A hybrid
implementation will be set up to add the new data. The solution developed in here will
integrate both the exisiting enterprise data and the newly added content data in order to
reduce costs following the requirements of Bluth Inc..

5.2 The Example Application

This section introduces the example application. Its purpose is to serve as small-scale example
of a real-world application. The framework developed throughout this thesis will be integrated
into the example application later in section 5.6. Although consisting of only a handful
of classes it provides the architectural characterstics necessary for showing the issues of an
integration.

5.2.1 Technology Prerequisites

After the basics of enterprise applications and content application were introduced in chapters
2 and 3, at this point specific products have to be chosen in order to develop and integrate
concrete solutions for the given problem. Java EE 5 and Java Content Repository were chosen
which the following sections are giving the rationales for.

Java EE 5 and EJB 3.0

Java EE 5 was primarily required by camunda GmbH. Nonetheless, Java EE is widely recog-
nized as the most successful enterprise application framework of today. Java EE 5 has been
introduced in section 2.5.

Java Content Repository

JCR was also required by camunda GmbH. Unlike Java EE 5, JCR didn’t reach that wide
level of recognition by the time of writing. Nevertheless, as it is the first and only available
specification to provide a standardized API as a layer of abstraction on content repositories
it was the natural choice. By using JCR, the application gets open for many products by
different vendors. It also ensures longevity, a large community and fosters trust. JCR has
been introduced in section 3.4.

5.2.2 Architectural Overview

The example application is built on top of Java EE 5 and EJB 3.0.2 EJB 3 Entities are
used to implement business entity objects. Stateless Session Beans are used to implement
the business logic. The client application accesses the session beans over RMI to get access
to entity objects. Figure 5.1 gives an architectural overview about the application.

2Introduced in section 2.5.

45

Master Thesis Hendrik Beck

Figure 5.1: Architecture Example Application

Entities and Session Beans

The example application contains two entities, a Customer and a Product. Accordingly,
two stateless session beans, CustomerManager and ProductManager, are offering methods
to perform CRUD operations on the entity objects. The application is meant to offer more
operations as well as rather complex business logic. For the sake of simplicity this is only
indicated by empty operations void complexBusinessOperationX().

Client

The client is a command-line remote application that is started from within Eclipse. It con-
tains some use-cases to demonstrate the capabilities of the application like creating customers
and products and displaying all entity objects. Later it will also serve to demonstrate the
newly integrated content operations like a full-text search.

The Java source files are organized under the package c.c.r.j.ejb3.client.*. The main
method is located in c.c.r.j.ejb.client.EjbAppClient. The client connects to the server-side
application over RMI, so RMI client libraries are necessary to be available in the runtime
environment. The package included in this thesis contains a running environment including
the client application and a server application on JBoss Application Server.

5.3 Decision Process Applied for the Example Application

Chapter 4 introduced different implementation models and a decision process to determine
the right model of implementation depending on types of data contained in business entities
of applications. This decision process is now being applied to the situation of the user story
presented in section 5.1.

46

Master Thesis Hendrik Beck

Survey Results - Entity ’Customer’
Full-text Search Binary Search Versioning I18N

id 0 0 0 0
name 0 0 0 0
freeTextDescription 1 0 1 1
profile 1 1 1 0
Total 2 1 2 1 6
% of all attributes 50% 25% 50% 25% 38%

Survey Results - Entity ’Product’
Full-text Search Binary Search Versioning I18N

id 0 0 0 0
name 0 0 0 0
shortDescription 1 0 1 1
shortDescription 1 0 1 1
technicalData 1 0 1 1
manufacturer 1 0 0 0
dataSheet 1 1 0 1
images 0 0 0 0
Total 5 1 3 4 11
% of all attributes 62.5% 12.5% 37.5% 50% 41%

Table 5.1: Results of the Survey Method applied for the user story situation.

The binary survey method introduced in section 4.4.1 was chosen to use for the decision
process. Table 5.1 shows the results of the survey method3 applied for the entities of the
example application. The attributes were extracted from the user story description given
earlier.

The global results can be derived from the total sums calculated during the survey analysis,
which are 6 and 11. Respectively the percentages can be taken into account, which are 38%
and 41% in average. In the case of this small-scale example it’s even much more interesting to
look at relative figures, as 6 and 11 don’t sound very much. Instead of 2 entity classes with 4
and 8 attributes a real-world project might have a 100 entities with 30 attributes in average.4

Looking at the percentages, nearly half of the attributes are content-related. This appears to
be enough to decide to create a hybrid solution. Nonetheless, concrete numbers are difficult
to give and small-scale examples never reflect problems very good, that tend to appear in
large and complex systems. So, for this user story a hybrid implementation is chosen.

The next influencing factor, "‘Implementation logic needed?"’, can definitely answered
with yes, as there is already a complex enterprise application running. In other words this
means, that it is not possible anymore to choose a content-based single-system implementa-
tion, either enterprise application as a single-system or the hybrid model has to be chosen.
The third group of influencing factors are "‘Other factors"’. Those are ignored for now as they
are hard to reproduce on a rather simple example scenario. Furthermore, they are irrelevant
in this context.

Summarizing, a hybrid implementation model is being chosen for the user story situation
for the following reasons:

3Introduced in section 4.4.1.
4This figure is just an example.

47

Master Thesis Hendrik Beck

• Many content features required for the newly added attributes lead to a content appli-
cation.

• Need for complex business logic lead to an enterprise application.

Finally the integration complexity of the resulting system has to be evaluated. The user
story provides three factors that will increase the expected integration complexity:

• Maintenance user interfaces should be integrated. It is especially forbidden to require
users to switch applications while maintaining data.

• All product master data should be published on the website.

• Content syndication system will have the need to integrate all the product data.

In conclusion a high integration complexity can be expected. On one hand this fact is
legitimating to put effort into reducing the costs of integration complexity. On the other
hand, the user story only fills this implementation chapter. The actual goals were given in
section 4.7. According to these goals a solution will be developed to meet these goals and to
represent a possible solution for the problem given in the user story.

5.4 Conceptual Overview

5.4.1 Overview

The goal is to develop a solution that allows to reduce both initial and follow-up costs when
using a hybrid implementation model. This section will give a high-level overview about the
approach and the different aspects. This should serve as a tool to transform the solution to
other technologies.

Initial costs are the total costs that arise from the need to set up a hybrid environment.
Some of these costs aren’t possible to reduce, like evaluation of a content management system,
licence fees, installation and administration. Others might be possible to be reduced by an
appropriate integration framework, like reducing the overall complexity of the solution and
reducing development costs. Thus, this frameworks aims to reduce parts of the inital costs
where possible.

The second cost drivers are costs per integration complexity. In order to avoid application
developers to do any further integration, an approach has been chosen that will be called Total
Integration. This means that integration is not done on a case-per-case basis when necessary.
Rather the framework will take care that in every given time, both sets of data are available,
fully-integrated within the enterprise application. This approach is expected to de-couple the
integration complexity and the follow-up costs during operation.

5.4.2 Conceptual Aspects

In the following, required aspects of the solution are outlined, still to some extent independent
from the concrete implementation decribed later in this chapter. Figure 5.2 illustrates these
aspects integrated into an enterprise application.

Content data should be generically integrated into an enterprise application. So first of
all it is necessary to be able to model the content data on enterprise application level. This is
not obvious as content data differs fundamentally from enterprise data. This aspect is called
the Modelling Aspect.

48

Master Thesis Hendrik Beck

Figure 5.2: Overview Conceptual Aspects and Enterprise Application

As soon as content is modelled into the enterprise application it has to be ensured that
persistence operations are always being performed on both sets of data. That way, total in-
tegration of both sets can be achieved. This is called the Activation Aspect as for every
persistence operation that the enterprise application is performing, a second persistence op-
eration, has to be activated.5

This second persistence operation for the content has to be executed on the content reposi-
tory. The aspect dealing with accessing the content repository and storing, loading or deleting
the content is called the Operation Aspect.

A configuration is necessary to achieve a well-regulated storage of the content data. This
deals with structuring the content data in an appropriate way and with keeping references
between enterprise data and content data in order to allow navigation in both directions
between the data sets. This is called Configuration Aspect. It has to be noted, that
configuration in this sense goes beyond usual configuration issues. It rather is a core part of
the framework instead of just a helper component to configure the software.

The aspects introduced so far lead to a solution that allows to handle enterprise data and
content data within the enterprise application and takes care of persisting both sets of data into
two different storage systems. The last aspect is allowing to use the services of the content
storage systems in order to enable the enterprise application benefit from content services
delivered by the content management system. This means, that the enterprise application is
for example able to perform a full-text search over a binary file. Those content-features have
to be exposed to the enterprise application. This is called the Content Services Aspect.

During the thesis a framework called CEF, Content Enrichment Framework, has been
developed. It implemented all these aspects according to the requirements given in the user
story and to the goals proposed in the previous chapter. This framework is going to be
described and explained in further detail in the next section.

5Actually, Integration Aspect would have been the name of choice, but it might have created confusion
in conjunction with a lot of other occurences of the term integration throughout this thesis. This is why
Activation has been chosen.

49

Master Thesis Hendrik Beck

Figure 5.3: Mapping of Content Into Java Classes

5.5 Framework Implementation

The name Content Enrichtment Framework (CEF) has been chosen for the framework because
it enriches enterprise applications with content as well as with the capability to handle content
effectively. On a more technical level, it also enriches entity objects within the application
with content, modelled into Java objects.

The following section is elaborating on the specific implementation. The section is or-
ganized according to the conceptual ascpect introduced earlier. Figure 5.7 illustrates the
complete framework integrated into the example application.

5.5.1 Modelling

In chapters 3 and 4 the nature of content data as well as the differences to enterprise data
was introduced. At first this leads to the assumption that content data can’t be modelled
into an enterprise application as enterprise applications are basing on fully structured data
and aren’t capable of efficiently handle semi-structured and unstructured data. This section
will deliver a solution that is able to achieve that.

Mapping of Content Into Java

To be able to model content into an enterprise application a mapping is necessary. This
mapping is done using the Apache Jackrabbit OCM component introduced in section 3.4.10.
This provides a mechanism to map content stored in a JCR-compliant storage into a Java
POJO model. It also provides a component to access content from within Java. Two steps
are necessary:

• POJO model: classes represent certain units of content, e.g. CustomerContent. The
attributes of this class are representing the values of that content, e.g. description or

50

Master Thesis Hendrik Beck

data sheet. The data types of the attributes must be equal to the data types of the
respective values of the content. Figure 5.3 gives an illustration on how content is
mapped into Java classes.

• Mapping Description: a mapping description declares how values of the content
repository should be mapped to attributes of the objects. Section B.5 shows an incom-
plete listing of the mapping file used in the implementation. The mapping descriptions
for the CEF project can be found under src/main/resources/cef-ocm-mapping.xml. For
content that is being directly attached to business entities the node type cef:businessEntity6

has been defined and must be assigned within the mapping descriptions. In the example
listing it can be recognized that the class-descriptor for CustomerContent assigns the
mixin type cef:businessEntity.

Association between Entity and Content

After the content has been mapped into a Java object, e.g. CustomerContent, it has to be
linked to the entity object it belongs to. This is done by creating an association between the
entity object and the content object. That way, the business entity is technically implemented
using two classes, the actual entity object of the enterprise application and the content object.
The decision which attributes should be modelled into the content object, is directly derived
from the individual results of the decision process.

Interfaces and Classes

A handful of interfaces, classes and XML descriptions, have been developed that are related
to modelling and mapping content. They are described in the following sections.

Interface Content The interface c.c.r.j.cef.impl.ocm.Content has to be implemented in
all content classes. It defines accessors for a unique identfier (String) and the path within
the content repository. They are necessary to allow backwards navigation from the content
repository towards the entity objects. They are also required by Jackrabbit OCM.

Class AbstractAssociatedContent The content objects do not implement the interfaces
Content directly but extend c.c.r.j.cef.impl.ocm.AbstractAssociatedContent. This class imple-
ments the logic to hold the two values path and id.

Node Type cef:businessEntity

Node types in JCR were introduced in section 3.4.4. Node types are used to assign a certain
behaviour or design to certain nodes within the content tree. In CEF, a node type is used to
mark the content object as such. It is named businessEntity, its definition is shown in listing
5.1. It fulfills two purposes:

• It marks content within the content repository as associated to business entities. As
content in JCR is organized hierarchically the content acossicated to business entity
might be located in an arbitrary depth within the that content tree. And there might
be content of arbitrary depth below that as well. This content below is illustrated in

6cef is not part of the node type name, it is used as the local namespace name. Although it should
be omitted when used like it is used here but it makes it more reconizable and hence helps the reader’s
understanding.

51

Master Thesis Hendrik Beck

figure 5.4 as NestedContent. The assignment of this node type to exactly that content
node within the tree that is related to the business entity it makes it possible to detect
that border. This is essential if content anywhere is being taken (e.g. as search result)
and it has to be figured out which business entity it belongs to. Then it can be went
up the content tree until the node type businessEntity is found.

• It defines the field entityClassname. It has to be noted that this is the class of the entity
object (e.g. Product), not of the entity content object (e.g. ProductContent). This is
necessary to allow the ContentServices7 to reversly retrieve business entities from a
given content.

Listing 5.1: Node Type Definition ’cef:businessEntity’
1 <nodeType name="cef:businessEntity" isMixin="true">
2 <supertypes>
3 <supertype>nt:base</supertype>
4 </supertypes>
5 <propertyDefinition name="cef:entityClassname"
6 requiredType="String" (...) >
7 <defaultValues><defaultValue /></defaultValues>
8 </propertyDefinition>
9 </nodeType>

Entity-specific Content

In the example application both entities Product and Customer should be extended by data
that has been identified as content. This means that Java classes for the content as well
as mapping descriptions have to be created for each entity individually. For every entity
that is extended with content there will be a new content class created. E.g. the class
CustomerContent is the respective content class of the entity Customer.

To emphasize the independence between both classes the project stores the content classes
in a different path on the file system but uses the same package structure. In production
projects it is imaginable that the modelling and storage of content objects is done separately
or even generated from sources fed by the content system or the like. Both entity objects
and content objects do not necesarily have to be modelled at the same time and stored in the
same place. Nevertheless, the content objects must be accessible by the respective entities in
order to be able to create the associations between entity object and content object. This
means that the content object or the respective library containing the content objects has to
be available in the classpath of the entity objects.

Common Content

Besides entity-specific content there is content that might often be re-used, such as a binary
document. It is possible and it might be recommended to re-use content objects and their
mappings if possible. Those common content consist of a Java class and a XML file containing
the mapping description. It is imaginable that these bundles of common content are managed
and shared centrally within an organization. In this thesis that is outlined by two common sets
of content, ImageSet and BinaryDocument. They can be found under the package structure
c.c.r.j.cef.impl.ocm.common.

7See section 5.5.5.

52

Master Thesis Hendrik Beck

ImageSet ImageSet contains images of the different sizes small, medium, large and press.
They might be used for products, where images for different places of usage are necessary,
e.g. a small picture for product lists, a large picture for a detailed view and a very large press
picture for publishing purposes. In the example application this common content is used for
storing pictures of the products.

BinaryDocument The BinaryDocument can hold documents of any binary format like
PDF, Excel or JPEG. Additionally this content defintion defines meta-information like the
mime type or the date of the last modification. In the example application this common
content is used for storing any binary data (except for product images) like the data sheet of
Products or the profile of Customers. In Java then, common content can simply be used as
shown in listing 5.2.

Listing 5.2: Usage Example Common Content
1 public class CustomerContent {
2
3 private BinaryDocument profile;
4
5 ...
6 }

Problems and Pitfalls

The advantage of this approach is that it makes data available in Java objects, that is actually
stored in a content management system. That way most of the issues of the integration of
enterprise data and content data can technically be solved in Java.

Nonetheless there is one major downside of this approach. The semi-structuredness and
unstructuredness of the content gets lost to some degree in the moment Java classes and
mapping descriptors have to be created. This also steals much of the flexibility that is typical
for content and content management systems. On the other hand it is often advisable to
have fully-structured and pre-defined data at hand in many cases. If for example a picture
should be displayed on the web then it might be helpful if the web application can rely on
the existance of a certain attribute denoting the actual image.

Depending on the case, it might be helpful to have a bit more unstructuredness at hand.
Possible ways to achieve that are:

• Load the content properties into dynamic maps as key-value pairs instead of static
attributes.

• Use a mechanism that allows to dynamically generate or change classes. AspectJ for ex-
ample provides this feature called Introduction.8 A different approach, amongst others,
would be to use a mechanism called DynaBean from the Apache Commons BeanUtils
project.9

• JCR itself provides a sohphisticated API to access unstructured data in a uniform way.
While there are some technical issues prohibiting to easily expose that API to remote
clients, local clients like web applications could use this API under certain conditions.

8See [Lad03], page 35.
9More details can be found on the Apache Commons BeanUtils homepage under

http://commons.apache.org/beanutils.

53

Master Thesis Hendrik Beck

Figure 5.4: Implementation Overview of the Modelling Aspect

In the context of this thesis Jackrabbit OCM was chosen as it was publicly available in a
stable release by the time of writing. Due to the modularization into different aspects, this
component could be exchanged using another technique of modelling and mapping.

5.5.2 Activation

Overview

In CEF Activation is being implemented using EJB 3.0 interceptors10. Section 2.3.3 intro-
duced the four basic persistence operations create, read, update and delete. Accordingly,
different types of interceptors have been implemented to realize activation for those opera-
tions:

• PersistInterceptor

• PersistCollectionInterceptor

• LoadInterceptor

• LoadCollectionInterceptor

• DeleteInterceptor

Persistence operations for content should be performed synchronously to persistence op-
eration on the entity object. This is an essential part of meeting the requirement of a total
integration. As those persistence operations on the entities take place in the session beans,
the interceptors have to be registered on the session beans, too. For every method a per-
sistence operation takes place (e.g. createCustomer()) one appropriate interceptor has to be
registered.

First, the kind of persistence operation according to the CRUD model has to be deter-
mined. The method createCustomer() for example performs a Create operation. The right
interceptor has to be chosen according to the mapping given in table 5.2.

The declaration "‘Single Value"’ or "‘Collection"’ and hence also the type of interceptor is
determined by the entity being persisted. If a single value entity object is given as parameter
then this is referred to as a "‘Single Value"’. If a collection of objects is given as parameter11

it is referred to as "‘Collections"’.
10Activation was introduced in section 5.5.2, interceptors in section 2.5.5.
11This is also known as bulk operations.

54

Master Thesis Hendrik Beck

CRUD Operations - Interceptor Types

Single Values Collections
C R U D C R U D

PersistInterceptor X X
PersistCollectionInterceptor X X
LoadInterceptor X
LoadCollectionInterceptor X
DeleteInterceptor X N/A12

Table 5.2: Mapping between CRUD types and interceptor types

All interceptor classes belong to the package c.c.r.j.cef.impl.ocm.ejb3interceptor. The in-
tegration of interceptors into the example application is described later in section 5.6.3.

Implementation

Implementation of all interceptors is following the same operational sequence. Calls from
the client on the session beans are being intercepted by the respective interceptor. Then the
actual call to the session bean method is done. Afterwards the call to the content manager,
introduced later in section 5.5.4, is done. Within the scope of the interceptor both the
parameters passed to the session bean operation as well as the return value from the session
bean operation are available. These values are then passed to the content manager which
then performs the actual persistence of the content associated with the entity object. This
call varies depending on the interceptor type as follows:

• Persist*Interceptor: It is expected that the entity / entities to persist are passed
as parameter of the session bean method. The interceptor is reading this parameter,
extracting it and passing it to the content manager. In case of the PersistCollectionIn-
terceptor, a collection of entities is expected as parameter.

• Load*Interceptor: It is expected that the entity / entities to load are returned by the
session bean method. The interceptor is reading the returned object and passing it to
the content manager. The content manager then loads the respective content, attaches
it to the given entity and returns it back to the interceptor. The interceptor is then
returning that object.

• DeleteInterceptor: It is expected that the entity class as well as the identifier are
passed as parameter to the session bean method. The interceptor is first calling the
session bean method in order to delete the entity object. Then, class and identifier are
passed as parameters to the content manager which then deletes the content. It has
to be noted that due to technical problems no delete interceptor has been implemented
that accepts collections. It has been omitted also due to the fact, that in practice it is
not a common use-case to remove collections of entities. If necessary, this feature would
have to be realized outside this thesis.

5.5.3 Configuration

The configuration aspect is responsible for providing a configuration mechanism. In CEF this
is done by the interface com.camunda.research.jcr.cef.impl.ocm.ContentConfiguration and its
implementation com.camunda.research.jcr.cef.impl.ocm.AnnotationContentConfiguration.

55

Master Thesis Hendrik Beck

Figure 5.5: Implementation Overview of the Activation Aspect

Interface ContentConfiguration

The interface ContentConfiguration provides methods that return configuration data. These
data are mostly used by the content manager. Some of these data are global settings, e.g.
the root directory of all CEF-related content data within the content repository. Others are
related to entities and expect the entity object as parameter. This interface can be found in
listing B.7.

Class AnnotationContentConfiguation

The implementation of ContentConfiguration interface uses Java annotations13. Except for
some settings, that are static values within the class definition, all settings are done by a set of
custom annotations. The AnnotationContentConfiguration class is reading those annotations
and returning the settings according to annotations set within the classes. The usage of these
annotation is explained in further detail in section 5.6 about integrating CEF into the example
application.

Content Path Configurations

A major responsibility of the configuration aspect is to configure how the content is being
structured within the content management system. As content stored by JCR-compliant
repositories is organized hierarchically14, a hierarchy structure has to be assured that is both
consistent for each content as also intuitive and human-readable15. Content structures are

13Introduced in section 2.5.6.
14See section 3.4.3.
15See section 3.2.2 for the meaning of human-readable content structures.

56

Master Thesis Hendrik Beck

built of three different parts:

1. Root Path This is the absolute root path under which all the content persisted
by CEF is collected. This is denote by the constant AnnotationContentConfigura-
tion.REPO_ROOT. The root path is only used for building other parts of the path.

2. Collection Path This path is right under the root path and is unique for every entity.
It can be manipulated by the annotation @ContentPathPattern, explained in section
5.5.3. The default value for this is the full-qualified class name of the entity class, the
content is associated with.

3. Entity Path This path is right under the collection path and is unique for every instance
of a entity. The business identifier, determined by the annotation @ContentId which
is explained in section 5.5.3, is used to build this path. Under the entity path, all the
content related to the respective entity is stored.

Listing 5.3 is showing an example path configuration. /root denotes the root path of
CEF. /root/Customer and /root/Product are the collection paths of the entites Customer
and Product. /root/Customer/001 is an example entity path of the business entity Customer.
The last element of this entity path is build from the identifier of the entity object. In the
example project this identifier 001 would be created by the JPA entity manager. As explained
in section 5.5.2, the relational persistence operation of the entities are taking place before the
content persistence operation. In case a new entity object is created, first of all the entity
manager is creating this identifier. It hence takes care of unique identifiers for the entities.
The content persistence is then taking this identifier and using it for persistence of the content.
Thus, an assocation between both, the enterprise data and the content data, is established.

Listing 5.3: Example Content Structure Resulting from Content Configuration
1 /root
2 /Customer
3 /001
4 + freeTextDescription
5 +...
6 /002
7 /Product
8 ...

Annotation @ContentEnriched

This annotation is used to mark entity objects that are enriched by content. This means that
those entities will be processed by the content manager component. This annotation doesn’t
have any further parameters or attributes.

Annotation @ContentPathPattern

This annotation is used to configure the collection path. This can either be done by free text
denoting the actual names of the desired path, e.g. People/Customers. Additionally, two
variables can be used here:

• %FCQNAME%: Denotes the full qualified class name of the associated business
entity. This can be used for creating flat content hierarchies by having unique identifiers
for each entity object under the same node.

57

Master Thesis Hendrik Beck

Listing 5.4: Flat Content Structure
1 Created by content path pattern: \%FQCNAME\% (default pattern)
2
3 /ExampleApplicationRoot
4 /com.company.Customer
5 /001
6 /002
7 /003
8 /...
9 /com.company.Supplier

10 /...
11 /com.company.Product
12 /001
13 /002
14 /...

Listing 5.5: Semantically Grouped Content Structure
1 Created by content path pattern: People/\%SNAME\% or e.g. People/Customer, People/Supplier
2
3 /ExampleApplicationRoot
4 /People
5 /Customer
6 /001
7 /002
8 /003
9 /...

10 /Supplier
11 /...
12 /Things
13 /Product
14 /001
15 /002
16 /...

• %SNAME%: Denotes the simple class name of the associated business entity, i.e. only
the actual class name without the package names.

This annotation is optional. If no path pattern is given, the default value will be the same
as the variable %FCQNAME% resulting in a flat hierarchie under the root node. This is done
because it ensures unique paths for each entity. As it can easily lead to unclear structures
(e.g. if there are many entities), it is recommended if either paths should not necessarily be
human-readable of if the number of entities is relatively low. An example resulting content
structure is shown in listing 5.4. By giving path patterns that are doing a grouping the
resulting paths get easily human-readable and can be maintained clearer even with a large
number of entities. An example for a grouped content structure is given in listing 5.5.

Annotation @ContentId

This annotation is used to mark which field of the entity should be used for uniquely identifying
the content. This id is primarily used for two purposes:

• Creating the last piece of the content path, the entity path. In listing 5.4 it can be
recoginized as 001, 002 and so on.

• Creating references between the entity and the associated content in order to be able to
navigate in both directions between entity data and content data.

58

Master Thesis Hendrik Beck

Listing 5.6: Versioning Implementation in JackrabbitContentManager
1 boolean checkedOut = false;
2 if (objectContentManager.objectExists(content.getPath())) {
3 try {
4 objectContentManager.checkout(content.getPath());
5 checkedOut = true;
6 } catch (VersionException e) {
7 logger.debug(content.getPath() + " is not versionable apparantly.");
8 }
9

10 objectContentManager.update(content);
11 } else {
12 objectContentManager.insert(content);
13 RepositoryHelper.setProperty(session, path, "cef:entityClassname", entityClassname);
14 }
15 objectContentManager.save();
16 if (checkedOut) {
17 objectContentManager.checkin(content.getPath());
18 }

Annotation @ContentAssocationGetter

The content object is attached to the entity object by association. The content manager
needs to extract content object from the entity object. This annotation marks the method
that allows to retrieve the content object, e.g. public CustomerContent getContent().

Annotation @ContentAssocationSetter

Similar to the previous annotation, it marks the method that allows to set the content object,
e.g. public void setContent(CustomerContent cc).

5.5.4 Operation

The operation aspect is responsible for actually performing the persistence operations of the
content attached to entity objects. The core of this aspect is the definition of a ContentMan-
ager interface providing basic persistence operations, similar to JPA’s entity manager16, and
an implementation of this interface which is based on JCR and Apache Jackrabbit17. The ex-
ecution of these operations on the content manager is triggered by components implementing
the activation aspect, described in the previous section.

Interface ContentManager

ContentManager is the sole interface between the target application and CEF. It is defined
as part of the project CEF as c.c.r.j.cef.impl.ocm.ContentManager. It defines the following
methods:

• persist()

• persistCollection()

• load()

• loadCollection()
16Introduced in section 2.5.3
17Introduced in section 3.4

59

Master Thesis Hendrik Beck

• remove()

Obviously there are similarities between the interceptor types and the persistence opera-
tions offered by the content manager. Unlike the JPA entity manager, the content manager
doesn’t distinguish create and update methods. This isn’t necessary as no attention has to be
paid to the existance of content within the content repository. Roughly speaking, content just
gets persisted, no matter if it had been existed beforehands or not. Existing content is being
overwritten. This behaviour will be changed if content is versionable. In that case, content
will not be overwritten but new versions are created.18 This behaviour could also be changed
if necessary in certain contexts.

Furthermore the interface doesn’t define any query methods, also opposite to the JPA
entity manager. Querying operations are fully implemented in an external service introduced
later in section 5.5.5 as part of the content services aspect.

Class JackrabbitOcmContentManager

The concrete implementation of the ContentManager interface is c.c.r.j.cef.impl.ocm. Jackrab-
bitOcmContentManager. In order to be able to make use of some convenient features of EJB 3
such as dependency injection, it is declared as a stateless session bean. The ContentManager
interface acts as the local interface. A remote interface isn’t offered as the content manager
is not intended to be used directly by clients.

The content manager is using Jackrabbit OCM19 for persisting the content objects. In the
constructor of the content manager, Jackrabbit OCM is being loaded. At this point it loads
the current mapping descriptors of entity content objects as well as common content objects.
This is illustrated in listing 5.7.

Listing 5.7: Jackrabbit OCM loads mapping descriptors
1 InputStream mapping = this.getClass().getResourceAsStream("/cef-ocm-mapping.xml");
2
3 this.objectContentManager = new ObjectContentManagerImpl(session,
4 new InputStream[] { mapping });

The important information about content to store, load and remove Jackrabbit OCM
needs to know is the path and the identifier. The identifier doesn’t necessarily has to be the
same as the identifier of the entities but in CEF the same identifiers are used. This means,
that the same identifiers are used for enterprise data in Java EE as well as the associated
content in JCR. This allows navigation from the content towards the entities. This features
is used for the content services later in section 5.5.5. The necessesity that information about
the path and the identifier have to be stored is also the reason why it has been defined for
the interface Content, introduced in section 5.5.1. This way, every content carries attributes
for the path and the identifier.

The client doesn’t need to know about paths and identifiers. Especially it doesn’t have to
set these values, as the content manager is taking care of this. It uses the content configuration
object to determine path and identifier for every given entity. It has to be kept in mind, that
the parameter passed to the content manager is only of the type Object and represents an
entity object. Attached to that entity might be a content object. And this content object
might have further nested content, e.g. associated with it. The basic workflow for every
persistence operation is the following:

18See the following section for the implementation of versioning.
19Introduced in section 3.4.10.

60

Master Thesis Hendrik Beck

1. Check whether the given entity is marked with @ContentEnriched. This determines
whether it is possible at all that this entity might carry content.

2. Check whether a content object is attached. It might be possible that the entity could
carry content, but in fact it does not. This is loosely related to a characteristic of
semi-structured and unstructured content given in section 3.1. But it’s also reasonable
programming practice to perform this check.

3. Determine the path of the content associated with the entity and inject it into the
content object. On persist operations, the path is needed to store the content. On
retrieve operations the path is needed to load the content from. This is done using the
content configuration.

4. Determine the identifier of the given entity and attach it to the content object via
injection.

5. Perfom the actual persistence operation. As the two necessary pieces of information,
path and identifier, have been injected into the content object, it is now possible to
persist the content object independently from the entity.

6. On retrieve operations, the retrieved content object is injected into the given entity.
Afterwards the entity object is returned.

Versioning is one of the content features listed in section 3.2. Versioning is the only one of
the given content features that is directly implemented into the content manager. To enable
versioning for a given content, the proper mixin node type has to be set in the mapping
description. If the content manager realizes that a given content is versionable, it performs
the appropriate versioning commands automatically. This is illustrated in listing 5.6. It has
to be noted that in the implementation of this thesis, versioning is only applicable for a whole
content object. The JCR API offers versioning on individual properties. This is also the way
versioning is described earlier, e.g. in the description of the survey method in section 4.4.1.

A full, but cleaned-up, listing of the JackrabbitOcmContentManager class can be found
in listing B.8.

5.5.5 Content Services

The previous section described the implementation of the aspects that allow a total integration
of content into an enterprise application. This section describes the implementation of the
content services aspect, which exposes content features like full-text search20 to the enterprise
application. This last step is necessary so that the enterprise application can benefit from
features that the content application delivers out-of-the-box. It has to be noted, that some of
the content use-cases are weaved into the operation aspect, such as versioning, or have to be
implemented using the modelling aspect, such as internationalization21. The content services
are generally responsible for querying operations on the content.

Conceptual Overview

The basic is that content use-cases are performed by the content application and the content
services, as a part of CEF, are exposing these features, or interfaces to perform these features
respectively, to the enterprise application.

20The content use-cases are introduced in section 3.2.
21Internationalization isn’t shown in this thesis.

61

Master Thesis Hendrik Beck

Therefore the content services are delegating content-related requests to the content ap-
plication. They are able to access the content repository as well as the entity manager of
the enterprise application. Hence they are able to e.g. search for content and then addi-
tionally load the respective entity objects in order to load the entity object and attach the
content. This allows a reverse access to the entity objects. This mechanism realized the total
integration for the content services.

Session Bean ’ContentServices’

The actual service that is offerering those content services is implemented as a stateless session
bean in c.c.r.c.cef.reverse.ContentServices.

Dependencies ContentServices has to have access to the following components:

• JPA EntityManager It has to have access to the same entity manager that is re-
ponsible for persisting the entities of the application. This is important for the service
to be able to load existing entities. In the prototype this is done by just putting the
application as well as the CEF framework into the same .jar file. This implicitly forces
EJB to inject the same entity manager when using the @PersistenceContext annotation.
Please note, that in a real project it would be impracticable to put both the application
and the framework into the same jar. Here it has been done for the sake of simplicity.

• Content Repository It also has to have access to the content repository where the
content belonging to the application is stored. In the prototype this is done by using
the same lookup code or the same JNDI name respectively for the JCR session object.

Implementation The session bean contains helper methods as well as the actual services.
Most notably among these helper methods are:

• Node getEntityRootNode(Item item) This method recursively climbs up the con-
tent tree starting at the given JCR item until the marker node type cef:businessEntity
found. It then returns this content object.

• Node getAssociatedContentForEntity(String path) This methods returns the
same value as the previous operation but for a given path instead of an JCR item.

• String getEntityIdForItem(String path) This returns the entity ID of the content
stored under the given path. It loads the content under that path, reads the property,
that carries the identifier, and returns its value. It is used for determining which entity
instance has to be loaded from JPA for a given piece of content.

• Object getEntityContentBundle(String path) This loads the content at the given
path, extracts the class of the entity it is associated with and extracts the identifier of
the entity instance. With this data it is able to load the entity from the JPA entity
manager. Finally it injects the content object into the entity and returns the entity.
This methods is fundamental for other content service operations.

During the thesis only one content operation has been implemented. Listing 5.8 shows
the source code of this operation. In line 6 an XPATH query is created containing the query
string. This query is delegated to JCR in line 9. This part is essential, as it is visible that
the whole complexity of a full-text search is available by just using a handful of lines of code.
After having put a lot of initial effort into the hybrid system, this is the moment where it

62

Master Thesis Hendrik Beck

Listing 5.8: Implementation of ContentServices.fullTextQuery(String queryString)
1 public Collection<Object> fullTextQuery(String queryString)
2 throws ItemEntityAssocationException {
3
4 Collection<Object> result = new ArrayList<Object>();
5
6 String xpathQuery = "//*[jcr:contains(., ’" + queryString + "’)] ";
7
8 try {
9 Query query = session.getWorkspace().getQueryManager().createQuery(xpathQuery,

10 Query.XPATH);
11 QueryResult queryResult = query.execute();
12 NodeIterator it = queryResult.getNodes();
13 Node node;
14 while (it.hasNext()) {
15 node = it.nextNode();
16 result.add(getEntityContentBundle(node.getPath()));
17 }
18 return result;
19 } catch (Exception e) {
20 throw new ItemEntityAssocationException("Error on full-text search: ’" +
21 queryString + "’", e);
22 }
23 }

pays back. Every single feature that the content repository, or JCR respectively, is able to
perform can be exposed to CEF, and hence to the target application, by such an operation!

After JCR returns matches for the XPATH query, the session bean uses the helper methods
mentioned above to retrieve the associated entities and to return them as a bundle.

Usage Example If using this service from a client the following code makes clear that it’s
possible within one method call to perform a content operation and get the entity-content
bundle back. This is a major saving in terms of lines of code and network calls compared to a
manula integration where typically two network calls have to be done. Listing 5.9 shows how
to use the full-text query operation in a client application:

Listing 5.9: Usage example of ContentServices.fullTextQuery(String queryString)
1 ContentServicesRemote contentServices;
2 // Lookup code here or using dependency injection
3 Collection<Object> result = contentServices.performFullTextQuery("Darmstadt");
4 for (Object o:result) {
5 System.out.println(o.getClass());
6 // Do something else
7 }

5.6 Integration in the Example Application

This section describes the integration of the framework developed during this work into the ex-
ample application that was introduced at the beginning of this chapter. First the prerequisites
on the environment is shown. The example application itself requires a running application
server environment according to the requirements of Java EE 5 and EJB 3 but the extensions
that are being integrates do have some further requirements. Then modifications on entities
as well as on session beans are explained. Finally transactions are taken into account. Figure
5.6 is showing the example application after content has been integrated.

63

Master Thesis Hendrik Beck

Figure 5.6: Architecture Example Application with Content

5.6.1 Environment Prerequisites

The most important part of the environment to set up is a JCR-compliant content repository.
In this thesis Apache Jackrabbit22 is being used. Hence a running Jackrabbit instance has to
be set up and registered in JNDI.23.

5.6.2 Modifications on Entities

In CEF the content objects are attached to the actual entities. The necessary modifications
are described in the following. An example entity object can be found in section B.2.

1. Mark Entities as ContentEnriched Entities that are carrying content first have
to be marked by the annotation ContentEnriched24. This allows CEF to efficiently
recognize whether an entity carries content. As it is only a marker annotation25 no
more parameters have to be set.

2. Meta Information For Content Structuring CEF has to be provided with meta
information about how to structure the content. As explained in section 5.5.3, there
are default values but the structure can also be customized. This is done by using
the class-level annotation @ContentPathPattern("People/Customers"), as explained in
section 5.5.3. The given path, here "‘People/Customers"’ as an example, denotes the
root path of content belonging to that entity.

22Introduced in section 3.4.9.
23Instructions can be found at http://jackrabbit.apache.org.
24See section 5.5.3.
25This is not an official term but it is inspired by the phrase marker interface.

64

Master Thesis Hendrik Beck

3. Denote getter and setter for content object As explained in section 5.5.3 and 5.5.3
the getter method for the content object has to be marked by @GetAssociatedContent,
the setter method has to be marked by @SetAssociatedContent.

4. Mark attached content object as transient In order to avoid that the content
object is being persisted, also these accossor methods have to be marked as transient
by @javax.jpa.Transient26.

5.6.3 Modifications on SessionBeans

CEF as it is implemented requires that persistence services are exposed by session beans.27

These are the points in the source code where persistence operations for the actual entities
are initiated. Here, also the persistence operation of the content must be triggered. Thus
some changes to the session beans must be done which are explained in the following.

CEF includes a set of interceptors that allows simple integration of the activation aspect.
According to section 5.5.2 the right interceptor has to be chosen for each session bean operation
where persistence operations are performed. The actual registration of interceptors has been
described in section 2.5.5. Listing 5.10 shows an example:

Listing 5.10: Example Interceptor Registration
1 @Interceptors(PersistInterceptor.class)
2 public void createProduct(Product p) {
3 entityManager.persist(p);
4 }
5
6 @Interceptors(LoadCollectionInterceptor.class)
7 public Collection<Product> getAllProducts() {
8 Query query = entityManager.createQuery("select p from Product p");
9 Collection list = query.getResultList();

10 return list;
11 }

5.6.4 Transactions

As introduced in section 2.3.5 persistence operations like the one here must be executed
transactionally. As there are two distinct persistence operations for the same entity it is
important to ensure that both operations succeed or none. Therefore a transaction is required
that spans both operations. Thus, the two following things have to be done:

1. Make sure a superior transaction is spanning both operations.

2. Make sure any failure occuring in one of the two operations will roll back the transaction
properly.

Spanning exception over both persistence operations

Spanning transactions must be initialized before calling the two operations. As the session
beans of the application are the components calling the persistence operations, it must be

26It is clear that this annotation is provided by JPA as well as used by JPA. It is not part of the CEF
framework.

27This must not be the case nor is it meant as a general design advice. See section 6.4 for further information
about applicabilty for other platforms.

65

Master Thesis Hendrik Beck

ensured within here. Eventually a transaction might be existing even before the session bean
operation is called. In this case, the surrounding transaction should be used. In EJB 3.0 the
most convenient way to archive this is by giving transaction responisiblity to the application
server by setting the annotation

@javax.ejb.TransactionManangement(TransactionManagementType.CONTAINER)

Furthore EJB 3.0 provides flexibility on what to do with surrounding transcations and
when to start new transactions. This can be done by using the javax.ejb.TransactionAttribute
annotation. In this thesis the proper transaction attribute had been chosen to be

@javax.ejb.TransactionAttribute(TransactionAttributeType.REQUIRED)

Rollbacks on Exceptions

In case of any exception occuring within each of the persistence operations the spanning
transaction must be rolled back. For the JPA operation no special treatment is necessary,
as transaction handling is integrated properly into EJB. But still, transaction handling for
the the content persistence operation has to be ensured. The right handling would be ensure
that the spanning transaction is being rolled back on any error occuring within the content
manager. Thus, the content manager is throwing either one of two different exceptions created
for this purpose:

• c.c.r.j.cef.impl.ocm.ContentPersistenceOperationFailedException

• c.c.r.j.cef.impl.ocm.ContentStorageException

Both exceptions are derived from RuntimeException. As stated earlier in section 2.3.5,
EJB is specified to roll back transactions automatically, if RuntimeExceptions are being
thrown.

Additionally, these two exceoptions have been annotated with javax.ejb. ApplicationEx-
ception(rollback=true), which also makes sure that this particular exception rolls back trans-
actions.28

5.7 Future Work

This implementation of CEF is functional and gives a clear demonstration the total integration
principle. Yet its development was heavily constrained by time having the need to fit into
this thesis. In the following, some thoughts about the future work of CEF are presented. It
has to be noted, that this refers only to the framework CEF. A general section about future
work can be found in the end of this thesis in section 7.1.

• CEF performs the total integration on every persistence operation without any excep-
tions. In practice this would mean, that often large binary objects would be loaded that
don’t necessarily have to be loaded. A solution would be to implement a partial loading
or lazy loading mechanism on content.

28As the exception is derived from RuntimeException, this would not have been necessary anymore. But it
also doesn’t have any negative effects.

66

Master Thesis Hendrik Beck

• The modelling aspect only allows to have content attached to an entity. This implies
that no content object could be created stand-alone. This would also imply that entities
are always implemented as EJB entities without any regard to the individual results of
the decision process.

• Implement other methods of modelling and mapping, as already proposed in section
5.5.1.

• Instead of the AnnotationContentConfiguration, a configuration based on XML would
avoid the neccesity to alter the source code if changes to CEF configurations would have
to be made.

• Although there are no major performance issues expected that are due to the source code
of CEF, extensive performance test under various conditions would be recommended.

• JPA is able to persist graphs of entities. CEF expects the entity given as parameter at
the session bean operation and doesn’t recognize content attached to nested objects.

• CEF as well as the example application is being deployed as part of the same enterprise
archive. A single deployable package of the CEF code should be created that can better
be shared and deployed.

67

Master Thesis Hendrik Beck

Figure 5.7: Overview Diagram of all CEF Components Integrated into the Example Applica-
tion

68

Chapter 6

Evaluation

The following chapter evaluates the value of this thesis. To achieve this, different aspects are
taken into account:

• First, to verify that scope and the overall goals of the thesis, introduced in section 1.2
have been met. They required to develop a decision process leading to concrete imple-
mentation models and to investige on cost behaviours on different models. Furthermore
they required to implement a concrete solution reducing costs in hybrid implementation
models. These goals have been refined in section 4.7.

• Furthermore, the applicability of the thesis for other technologies and platforms should
be taken into account as a wider range of applicability implies a greater overall value of
the results of this thesis.

The following sections will take a look at the different aspects in order to show, that the
goals of this thesis have been reached. Therefore, the decision process, the implementation
and the applicability will be investigated.

6.1 The Decision Process

Chapter 4 introduced the decision process. Delivering global results and individual results,
this process supports to determine the appropriate model of implementation and also sup-
ports in separating the data in case of hybrid implementation. Section 5.3 also applied the
decision process on the example application. Future work on this process will be presented
later in section 7.1. During the elaboration on the decision process throughout chapter 4 all
factors influencing this process are introduced. Also, all different implementation models were
explained which are the outcomes of this process.

6.2 Fields of Suitability

The decision process presented in chapter 4 leads to two different architectural choices: a
single-system implementation model or a hybrid system implementation model. Furthermore
it coined the term integration complexity in order to explain the behavior of follow-up costs of
a hybrid system. Chapter 5 then provided an implementation of a framework that provided
a total integration on enterprise application level for hybrid implementations. This total
integration is reducing follow-up costs. The savings get the more significantly the higher the
integration complexity is. The diagram in figure 6.1 illustrates this. The left half of the

69

Master Thesis Hendrik Beck

Figure 6.1: Fields of suitability for CEF

matrix is representing a single-system implementation, thus the integration complexity does
not apply. The right side represents a hybrid system. Quadrant 3 shows hybrid systems
with a low integration complexity. Here, an integration on a case-per-case basis might be
suitable. In quadrant 4, hybrid system with high integration complexities, the follow-up costs
are rapidly increasing. These are the cases where it is suitable and recommended to use CEF
to achieve cost reductions.

6.3 Cost Savings

Figure 6.2: Cost savings for hybrid implementations achieved by CEF

Figure 4.6 in section 4.6.3 illustrated the cost behaviour of hybrid implementation models
with manual integration. This combination doesn’t scale well with high integration complex-
ities. Figure 4.7 in section 4.7 illustrated the desired cost savings: the reduction of initial
costs as well as the reduction of costs associated with high integration complexities. Figure
6.2 illustrates the cost savings achieved by CEF. The following sections elaborate on the two
different kinds of costs and the savings that could be reached.

70

Master Thesis Hendrik Beck

6.3.1 Follow-up Costs

The approach of a total integration as explained in section 5.4 makes further manual in-
tegration tasks unnecessary and obsolete. This de-couples follow-up costs and integration
complexity as shown in figure 4.6.

6.3.2 Initial costs

The following list according to section 4.6.4 gives details about costs saving on individual
initial cost factors.

• Content Application Environment This factors can not be reduced by CEF.

• Developer Know-How These initial costs can be reduced by CEF. CEF is hiding
a large part of the integration complexity. It also allows to model content using an
annotated POJO model. This only required little new knowledge about issues of an
integration.

• Time-to-market As CEF is hiding much of the integration issues and simplifying
the complexity the time necessary to build hybrid implementation has been reduced
significantly. This also includes prototypes that are necessary in early project phases.

6.3.3 Maintenance Costs

CEF is designed to be universally integrateable into enterprise applications compliant to Java
EE 5. This implies that it increases the complexity of the actual enterprise applicaiton only
to a minimal degree. The largest part of the complexity to handle the hybrid persistence is
implemented outside the application. According to 4.6.5, this reduces the maintenance costs
in comparison with a manual integration within the sources of the enterprise application.
Although concrete numbers are difficult to estimate in general, facing the big amount of costs
necessary for maintenance, this is a big improvement over manual integration.

6.4 Applicability for other platforms

The prototypical implementation of the hybrid persistence concept has been tailored to a
Java EE 5 environment using JCR for accessing content. While both technologies have been
a choice particularly made for this thesis, most of the concepts are also applicable to a wider
range of technologies. The chapters 2 and 3 have been giving an basic and rather technology-
independent introduction into the fields of enterprise applications and content applications.
Most of the work done during this thesis is intended to be applicable to these areas in general.

The concept and descision process introduced in chapter 4 is fully independent from any
concrete technology. Hence, the need for a hybrid persistence as well as the hybrid persistence
itself can be transformed to every other technology introduced earlier.

The implementation instead is per se far more tightly coupled to specific platforms and
technologies. To provide abstraction and generality to a certain degree, it was nevertheless
introduced using three consecutive steps, each one getting more concrete than the previous
one:

• Conceptual level: Section 5.4 introduced the basic aspects of the implementation.
This is still abstract and independent from technological details and thus should be
transformable to a high degree.

71

Master Thesis Hendrik Beck

• API: Section 5.5 introduced the interfaces ContentManger, ContentConfiguration und
Content. They are decoupling the individual parts and the application from each other
component to a certain degree. This way, individual components, classes and ascpects
can be exchanged by other implementations. For example the interceptor could easily be
exchanged by another activation method, e.g. by making calls to the content manager
programatically. By still using the conent manager interface this would not affect any
other component.

• Implementation: Furthermore section 5.5 explained detailed implementational solu-
tions. This is the part of the implementation that is specifically done for the actual
target standards, Java EE and JCR.

72

Chapter 7

Conclusion

7.1 Future Work

Future work recommended to achieve on the first major topic, the decision process introduced
in chapter 4, would have to contain:

• The decision process only takes data and content features into account. The third factor,
the expected integration complexity, hasn’t been taken into account. If this would be
included in the process a complete cost estimation could be achieved.

• The methods used to analyze the existing data would have to be improved. On one
hand this means minor fixes and improvements to make the methods better and the
results more sigificant and comparable between different projects. But also especially
for the data method and the semantic method support in development environments
like Eclipse would be imaginable. But also for the survey method support would make
execution of the survey more efficient. E.g. the required content-features could be
collected as tagged information which a plugin could read and transform into a report.
Also summarizing reports for whole projects would increase the performance.

• The methods, or the whole process respectively, could be worked into the existing
processes ATAM and CBAM, introduced in section 4.2.1. This could help to popu-
larize the decision process when it is part of a popular and widely accepted process.

• Finally the process would have to be applied to projects in order to gather results and
experiences. This could on one hand lead to improvements on the process itself. On
the other hand, it might also lead to a result base from which concrete numbers could
be derived.

Future work in detail that is recommended to achieve on the second major topic, the
framework CEF which was introduced in chapter 5, has already been covered in section 5.7.
But from a rather high level it would definitely be desirable to do the following:

• First of all, CEF would have to be finished and made ready for usage in a production
project. This requires to finish most of the points mentioned in section 5.7. Maybe
some more improvements have to be done in order to customize it to a certain project
situation.

• Experience has to be collected in real-world productive projects.

73

Master Thesis Hendrik Beck

There was the assumption that hybrid systems, being specialised in processing content
data, will under most conditions (regarding average number of content features required, an
average integration complexity and the like) bring more benefit at lower costs than integrating
content-related features into enterprise applications. But then again, one of the most pop-
ular O/R mapping frameworks for enterprise persistence, Hibernate, has recently integrated
Apache Lucene.1 This enables full-text search over Hibernate-persisted entity objects. One
one hand, this shows the need for content-related features in enterprise applications. On the
other hand, this area should be observed in the future, there might be an alternative solution
coming up.

7.2 Summary

This thesis didn’t coin the terms of the structuredness of data nor did it develop the hybrid
implementation model that was introduced in chapter 4. All that has been around for some
time. It rather linked a fundamental part of every software, the persistent data, together
with a fundamental decision to be made in every project, the architecture. Even though
the proposed architectural options are already in use all over the place, there has been little
awareness about them and about how they are directly influenced by data types and by
operations that might have to be performed on those data.

This thesis showed that the kind of data an application is required to process has direct
influence on the appropriate model of implementation. It showed how this influence can be
measured, documented and how it can be used well-regulatedly in order to determine the right
architectural choices. It also helps to move this decision into an early stage of development.
This helps to circumvent wrong architectural decisions that are realized too late during the
project.

It further defined the term of the integration depth in conjunction with hybrid implemen-
tation models and explained the cost behaviour in comparison with the main alternative, a
traditional, single-system enterprise application.

Based on that it implemented a framework based on Java EE 5 and JCR. Through its
realized total integration approach it makes follow-up costs of hybrid projects independent
from the integration depth. Furthermore it lowers the barrier for a hybrid implementation and
reduces initial costs to a certain degree. In the end, it only requires very little effort to enable
enterprise applications to use content-related features like full-text search, search over binaries
or versioning. Even more, it opens the well-established world of Java enterprise applications up
for the world of unstructured and semi-structured data, one more time facing an estimated 80
percent of all existing data within organizations are unstructured2. By seamlessly integrating
both worlds, it paid attention to not re-inventing the wheel but providing enough glue code
to let both application types play their own strengths and letting the other ones play theirs.

The rising appearance of the word "‘unstructured"’, rarely to be heard before by many
people, emphasizes the rising importance of content. Ever-growing network speeds all over
the world, dropping prices for storage devices, the success of multimedia producing masses of
different outputs in various formats, just to mention a few. All those factors, and many more
probably, lead to an explosion in content data. The amount of information existing all over
the world grew from 3.000.000.000 (billion) gigabytes in 2000 to an estimated 24.000.000.000
gigabytes in 2003.3 By the time of writing this is more than four years ago and the growth

1See lucene.apache.org and www.hibernate.org.
2According to [RK05].
3According to estimations made by UC Berkely in "‘How much information?"’. The full report can be

found under http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/.

74

Master Thesis Hendrik Beck

rate is even expected to still rise. Hence, effective management and integration of content is
becoming one of the most important topics over the next years.

In this context however, the proposed solution is not meant to be the best shot and a
substitute to high-end full-fledged enterprise content management systems. The theoretical
considerations about the role of data and data types should rather rise awareness when de-
signing enterprise applications in general. It doesn’t necessarily have to lead to a hybrid
implementation model using JCR and Apache Jackrabbit. Even in larger scales, awareness
about different categories of data might help to distribute them in a senseful way across dif-
ferent systems within an IT landscape. The principles behind the different types of data, the
different types of applications as well as the cost drivers associated with them stay more or
less the same in scenarios that are differing from the scenario investigated in this thesis. And
last but not least, enterprise applications integrating content data from enterprise content
management systems have to deal mostly with the same issues as the ones that have been
solved with CEF.

75

Appendix A

Links

Name URL

camunda GmbH http://www.camunda.com

JSR-170 (JCR 1.0) http://www.jcp.org?id=170

JSR-283 (JCR 2.0) http://www.jcp.org?id=283

Apache Jackrabbit http://jakrabbit.apache.org

JCR-Explorer http://www.jcr-explorer.org

Architecture Tradeoff Analysis Method sei.cmu.edu/architecture/ata_method.html

Cost Benefit Analysis Method sei.cmu.edu/architecture/products_services/cbam.html

EMC Documentum http://www.emc.com

Microsoft Sharepoint http://office.microsoft.com/en-us/sharepointserver

Day Communiqué http://www.day.com

Table A.1: Links

76

Appendix B

Sources

B.1 Interceptors

B.1.1 PersistInterceptor

Listing B.1: Source code PersistInterceptor
1 package com.camunda.research.jcr.cef.impl.ocm.ejb3interceptor;
2
3 public class PersistInterceptor {
4 ContentManager contentManager;
5
6 @AroundInvoke
7 public Object persist(InvocationContext invocation) throws Exception {
8 Object result = invocation.proceed();
9 if (contentManager == null) {

10 contentManager = new JackrabbitOcmContentManager();
11 }
12
13 for (Object param : invocation.getParameters()) {
14 if (AnnotationHelper.isContentEnriched(param)) {
15 contentManager.persist(param);
16 }
17 }
18
19 return result;
20 }
21 }

B.1.2 PersistCollectionInterceptor

Listing B.2: Source code PersistCollectionInterceptor
1 package com.camunda.research.jcr.cef.impl.ocm.ejb3interceptor;
2
3 public class PersistCollectionInterceptor {
4
5 @EJB(name = "ejb/JackrabbitOcmContentManager")
6 ContentManager contentManager;
7
8 @AroundInvoke
9 public Object persist(InvocationContext invocation) throws Exception {

10 Object result = invocation.proceed();
11
12 for (Object param : invocation.getParameters()) {
13 if (param instanceof Collection) {
14 contentManager.persistCollection((Collection<Object>) param);
15 }

77

Master Thesis Hendrik Beck

16 }
17
18 return result;
19 }
20 }

B.1.3 LoadInterceptor

Listing B.3: Source code LoadInterceptor
1 package com.camunda.research.jcr.cef.impl.ocm.ejb3interceptor;
2
3 public class LoadInterceptor {
4
5 @EJB(name = "ejb/JackrabbitOcmContentManager")
6 ContentManager contentManager;
7
8 @AroundInvoke
9 public Object persist(InvocationContext invocation) throws Exception {

10 Object result = invocation.proceed();
11 result = contentManager.loadContent(result);
12 return result;
13 }
14 }

B.1.4 LoadCollectionInterceptor

Listing B.4: Source code LoadCollectionInterceptor
1 package com.camunda.research.jcr.cef.impl.ocm.ejb3interceptor;
2
3 public class LoadCollectionInterceptor {
4
5 @EJB(name = "ejb/JackrabbitOcmContentManager")
6 ContentManager contentManager;
7
8 @AroundInvoke
9 public Object persist(InvocationContext invocation) throws Exception {

10 Object result = invocation.proceed();
11 if (result instanceof Collection) {
12 result = contentManager
13 .loadContentCollection((Collection<Object>) result);
14 }
15 return result;
16 }
17 }

B.1.5 DeleteInterceptor

Listing B.5: Source code DeleteInterceptor
1 package com.camunda.research.jcr.cef.impl.ocm.ejb3interceptor;
2
3 public class DeleteInterceptor {
4
5 @EJB(name = "ejb/JackrabbitOcmContentManager")
6 ContentManager contentManager;
7
8 @AroundInvoke
9 public Object persist(InvocationContext invocation) throws Exception {

10 Object result = invocation.proceed();
11 Object[] params = invocation.getParameters();

78

Master Thesis Hendrik Beck

12
13 if ((params == null) || (params.length < 2)) {
14 return null;
15 }
16 contentManager.remove((Class) params[0], params[1]);
17 return result;
18 }
19 }

B.2 Example Entity Object Enriched with Content

Listing B.6: Example Entity Object Enriched with Content
1 @Entity
2 @Table(name = "Customer")
3 @ContentEnriched
4 @ContentPathPattern("People/Customers")
5 @ContentClass(CustomerContent.class)
6 public class Customer implements Serializable {
7 private int id;
8
9 private String name;

10
11 @Id
12 @GeneratedValue(strategy = GenerationType.AUTO)
13 @ContentId
14 public int getId() {
15 return id;
16 }
17
18 public void setId(int id) {
19 this.id = id;
20 }
21
22 @Transient
23 private CustomerContent content;
24
25 @GetAssociatedContent
26 @Transient
27 public CustomerContent getContent() {
28 return content;
29 }
30
31
32 @SetAssociatedContent
33 @Transient
34 public void setContent(Object content) {
35 this.content = content;
36 }
37 }

B.3 Interface ContentConfiguration

Listing B.7: Interface ContentConfiguration
1 package com.camunda.research.jcr.cef.impl.ocm;
2
3 public interface ContentConfiguration {
4
5 public String getEntityRootPath(Object entity);
6
7 public String getEntityRootPath(Class entityClass, Object id);
8

79

Master Thesis Hendrik Beck

9 public String getCollectionRootPath(Class entityClass);
10
11 public String getCollectionRootPath(Object entity);
12
13 public Class<Object> getContentClass(Object entity);
14
15 public String getId(Object entity);
16
17 public Object setContent(Object entity, Object content);
18
19 public Content getContent(Object entity);
20
21 public String getPathPattern(Class<Object> entityClass);
22
23 public boolean isContentEnriched(Object entity);
24
25 public String getRoot();
26
27 }

B.4 JackrabbitOcmContentManager

Listing B.8: Implementation of JackrabbitOcmContentManager
1 package com.camunda.research.jcr.cef.impl.ocm;
2
3 import com.camunda.research.jcr.cef.util.RepositoryHelper;
4
5 @Stateless
6 @Local(ContentManager.class)
7 public class JackrabbitOcmContentManager implements ContentManager {
8
9 private javax.jcr.Session session;

10
11 private org.apache.jackrabbit.ocm.manager.impl.
12 ObjectContentManager objectContentManager;
13
14 private ContentConfiguration contentConfiguration;
15
16 public JackrabbitOcmContentManager() {
17 try {
18 InitialContext ctx = new InitialContext();
19 Repository repository = (Repository) ctx.lookup("java:jcr/local");
20 Credentials credentials = new SimpleCredentials("EJB-APP",
21 "".toCharArray());
22 this.session = repository.login(credentials);
23
24
25 InputStream mapping = this.getClass().getResourceAsStream(
26 "/cef-ocm-mapping.xml");
27
28 this.objectContentManager = new ObjectContentManagerImpl(session,
29 new InputStream[] { mapping });
30
31 this.contentConfiguration = new AnnotationContentConfiguration();
32 } catch (Exception e) {
33 throw new ContentStorageException(
34 "JCR not available, see nested exception for details.", e);
35 }
36 }
37
38 public Object load(Object entity) {
39 if (entity == null) {
40 return entity;
41 }
42
43 if (contentConfiguration.isContentEnriched(entity) == false) {

80

Master Thesis Hendrik Beck

44 return entity;
45 }
46
47 Object c = loadEntity(entity);
48 entity = contentConfiguration.setContent(entity, c);
49
50 return entity;
51 }
52
53 private Object loadEntity(Object entity) {
54 return load(contentConfiguration.getContentClass(entity),
55 contentConfiguration.getCollectionRootPath(entity),
56 contentConfiguration.getId(entity));
57 }
58
59 private Object load(Class contentClass, String path, String id) {
60 Filter filter = objectContentManager.getQueryManager().
61 createFilter(contentClass);
62 filter.setScope(path + "//");
63 filter.addEqualTo("id", id);
64 Query query = objectContentManager.getQueryManager()
65 .createQuery(filter);
66 Object c = objectContentManager.getObject(query);
67 return c;
68 }
69
70 private Object loadSingleContent(Class classname, String path) {
71 Filter filter = objectContentManager.getQueryManager().
72 createFilter(classname);
73 filter.setScope(path);
74 filter.addEqualTo("ocm:discriminator", classname.getCanonicalName());
75 Query query = objectContentManager.getQueryManager()
76 .createQuery(filter);
77 Object c = objectContentManager.getObject(query);
78 return c;
79 }
80
81 public void persist(Object entity) {
82
83 if (entity == null) {
84 return;
85 }
86
87 if (contentConfiguration.isContentEnriched(entity) == false) {
88 return;
89 }
90
91 if (contentConfiguration.getContent(entity) == null) {
92 return;
93 }
94
95 try {
96 prepareContentStructure(entity);
97 } catch (RepositoryException e) {
98 throw new ContentPersistenceOperationFailedException(
99 "Content structure could not be prepared!", e);

100 }
101
102 persistContent(contentConfiguration.getContent(entity),
103 contentConfiguration.getId(entity).toString(),
104 contentConfiguration.getEntityRootPath(entity), entity
105 .getClass().getCanonicalName());
106 }
107
108 public void remove(Object entity) {
109 if (entity == null) {
110 return;
111 }
112
113 String id = contentConfiguration.getId(entity);

81

Master Thesis Hendrik Beck

114 remove(entity.getClass(), id);
115 }
116
117 public void remove(Class entityClass, Object id) {
118 String path = contentConfiguration.getEntityRootPath(
119 entityClass, id);
120
121 try {
122 if (session.itemExists(path)) {
123 session.getItem(path).remove();
124 session.save();
125 } else {
126 logger.warn("Content should be deleted but does not exist.");
127 }
128 } catch (Exception ex) {
129 logger.error("Error removing content.", ex);
130 }
131 }
132
133 private void prepareContentStructure(Object entity)
134 throws RepositoryException {
135 RepositoryHelper.createNode(session, contentConfiguration
136 .getCollectionRootPath(entity));
137 }
138
139 public Collection<Object> loadCollection(Collection<Object> entities) {
140 Collection result = new ArrayList();
141 for (Object o : entities) {
142 result.add(load(o));
143 }
144 return result;
145 }
146
147 private void persistContent(Content content, String id, String path,
148 String entityClassname) {
149
150 try {
151 content.setId(id);
152 content.setPath(path);
153
154 boolean checkedOut = false;
155 if (objectContentManager.objectExists(content.getPath())) {
156
157 try {
158 objectContentManager.checkout(content.getPath());
159 checkedOut = true;
160 } catch (VersionException e) {
161 logger.debug(content.getPath()
162 + " is not versionable apparantly.");
163 }
164
165 logger.warn("Content " + content.getId()
166 + " already exists. Updating instead of inserting.");
167 objectContentManager.update(content);
168
169 } else {
170 objectContentManager.insert(content);
171
172 // On first persist operation for this entity set
173 // cef:entityClassname field
174 RepositoryHelper.setProperty(session, path,
175 "cef:entityClassname", entityClassname);
176
177 }
178
179 objectContentManager.save();
180
181 if (checkedOut) {
182 objectContentManager.checkin(content.getPath());
183 }

82

Master Thesis Hendrik Beck

184
185 } catch (Exception ex) {
186 throw new ContentPersistenceOperationFailedException(
187 "Error on persisting content!", ex);
188 }
189 }
190
191 public void persistCollection(Collection<Object> entities) {
192 for (Object entity : entities) {
193 persist(entity);
194 }
195 }
196
197 public ContentConfiguration getContentConfiguration() {
198 return this.contentConfiguration;
199 }
200
201 }

B.5 Content Mapping Description

Listing B.9: Content Mapping Description (incomplete)
1 <?xml version="1.0" standalone="yes"?>
2
3 <jackrabbit-ocm>
4
5 <class-descriptor
6 className="c.c.r.jcr.ejb3.article.content.ProductContent"
7 jcrNodeType="nt:unstructured" discriminator="true"
8 jcrMixinTypes="cef:businessEntity, mix:versionable">
9 <field-descriptor fieldName="path" path="true" />

10 <field-descriptor fieldName="id" jcrName="id" id="true" />
11 <field-descriptor fieldName="shortDescription" jcrName="shortDescription" />
12 <field-descriptor fieldName="longDescription" jcrName="longDescription" />
13 <field-descriptor fieldName="technicalData" jcrName="technicalData" />
14 <field-descriptor fieldName="scopeOfDelivery" jcrName="scopeOfDelivery" />
15 <field-descriptor fieldName="manufacturer" jcrName="manufacturer" />
16 <bean-descriptor fieldName="dataSheet" jcrName="dataSheet" />
17 <bean-descriptor fieldName="images" jcrName="images" />
18 </class-descriptor>
19
20 <class-descriptor
21 className="com.camunda.research.jcr.cef.impl.ocm.common.BinaryDocument"
22 jcrNodeType="nt:resource">
23 <field-descriptor fieldName="data" jcrName="jcr:data" />
24 <field-descriptor fieldName="mimeType" jcrName="jcr:mimeType" />
25 <field-descriptor fieldName="lastModified" jcrName="jcr:lastModified" />
26 <field-descriptor fieldName="encoding" jcrName="jcr:encoding" />
27 </class-descriptor>
28
29 </jackrabbit-ocm>

83

Bibliography

[Abi97] Serge Abiteboul. Querying semi-structured data. January 1997.

[AH00] Gunter Saake Andreas Heuer. Datenbanken: Konzepte und Sprachen. MITP-
Verlag, 2000.

[AK04] André Eickler Alfons Kemper. Datenbanksysteme. Oldenbourg Wissenschaftsver-
lag GmbH, 2004.

[All] Carl Allen. Software maintenance - an overview.
http://www.bcs.org/server.php?show=ConWebDoc.3063. Visited on Janu-
ary 13th 2008.

[BDKZ93] Rajiv D. Banker, Srikant M. Datar, Chris F. Kemerer, and Dani Zweig. Software
complexity and maintenance costs. Commun. ACM, 36(11):81–94, 1993.

[Boe81] Barry Boehm. Software Engineering Economics. Prentice Hall, 1981.

[Cod70] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, 1970.

[Cod90] E. F. Codd. The relational model for database management: version 2. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990.

[Dij82] Edsger W. Dijkstra. On the role of scientific thought. Selected writings on Com-
puting: A Personal Perspective, 1982.

[DK75] Frank DeRemer and Hans Kron. Programming-in-the large versus programming-
in-the-small. In Proceedings of the international conference on Reliable software,
pages 114–121, New York, NY, USA, 1975. ACM.

[Fie05] Roy T. Fielding. Jsr 170 overview. March 2005.

[GH03] Bobby Woolf Gregor Hohpe. Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions. Addison-Wesley Longman, 2003.

[JA] Rick Kazman Jai Asundi. A foundation for the economic analysis of software
architectures.

[JA01] Mark Klein Jai Asundi, Rick Kazman. Using economic considerations to choose
among architecture design alternatives. 2001.

[(JC01] Java Community Process (JCP). Java specification request 143: Workspace ver-
sioning and configuration management. http://www.jcp.org/en/jsr/detail?id=147,
January 2001. Visited on September 18th 2007.

84

Master Thesis Hendrik Beck

[(JC02] Java Community Process (JCP). Jsr 907: Java transaction api (jta).
http://www.jcp.org/en/jsr/detail?id=907, November 2002. Visited on January
11th 2008.

[(JC05a] Java Community Process (JCP). Jsr 170: Content repository for java technology
api. http://www.jcp.org/en/jsr/detail?id=170, June 2005. Visited on January
10th 2008.

[(JC05b] Java Community Process (JCP). Jsr 283: Content repository for java technol-
ogy api version 2.0. http://www.jcp.org/en/jsr/detail?id=283, September 2005.
Visited on January 11th 2008.

[(JC06a] Java Community Process (JCP). Java specification request 220: Enterprise jav-
abeans 3.0. http://www.jcp.org/en/jsr/detail?id=220, May 2006. Visited on De-
cember 6th 2007.

[(JC06b] Java Community Process (JCP). Java specification request 244:
Java platform, enterprise edition 5 (java ee 5) specification.
http://www.jcp.org/en/jsr/detail?id=244, May 2006. Visited on January
11th 2008.

[JG93] Andreas Reuter Jim Gray. Transaction Processing: Concepts and Techniques.
1993.

[KA89] P. Kanellakis and S. Abiteboul. Database theory column. SIGACT News, 20(4):17–
23, 1989.

[Lad03] Ramnivas Laddad. AspectJ in Action. Manning, 2003.

[Lib05] Jesse Liberty. Programming C#: Building .NET Applications with C#. O’Reilly,
19812005.

[MB07] Bernd Rücker Martin Backschat. Enterprise Java Beans 3.0. Elsevier, Spektrum
Akademischer Verlag, 2007.

[MF02] Matthew Foemmel Martin Fowler, David Rice. Patterns of Enterprise Application
Architecture. Addison-Wesley Longman, 2002.

[Mica] Sun Microsystems. Annotations. http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html.
Visited on January 6th 2008.

[Micb] Sun Microsystems. Api specification: Java transaction api (jta).
http://java.sun.com/products/jta/index.html. Visited on September 18th
2007.

[PAB97] Eric Newcomer Phillip A. Bernstein. Transaction Processing: For the Systems
Professional. 1997.

[PB97] Mary Fernandez Dan Suciu Peter Buneman, Susan Davidson. Adding structure
to unstructured data. January 1997.

[RE07] Shamkant B. Navathe Ramez Elmasri. Fundamentals of Database Systems.
Addison-Wesley, 2007.

85

Master Thesis Hendrik Beck

[RK01] Mark Klein Rick Kazman, Jai Asundi. Quantifying the costs and benefits of
architectural decisions. 2001.

[RK05] A. White Rita Knox, T. Eid. Management update: Companies should align their
structured and unstructured data. February 2005.

[SA00] Dan Suciu Serge Abiteboul, Peter Bunemann. Data on the Web. Morgan Kauf-
mann, 2000.

[Sne95] Harry N. Sneed. Estimating the costs of software maintenance tasks. 1995.

[Ull07] Christian Ullenboom. Java ist auch eine Insel - Das umfassende Handbuch. Galileo
Computing, 2007.

[Unia] Carnegie Mellon University. The architecture tradeoff analysis method (atam).
http://www.sei.cmu.edu/architecture/ata_method.html. Visited on Dezember
20th 2007.

[Unib] Carnegie Mellon University. Cost benefit analysis method (cbam).
http://www.sei.cmu.edu/architecture/products_services/cbam.html. Visited
on Dezember 20th 2007.

86

List of Figures

3.1 Hierarchical Repository Model of JCR . 25
3.2 UML diagram of Item, Node and Property of the JCR Repository Model . . . 26

4.1 UML Analysis Model of Business Domain and Entity Object ’Customer’ . . . 31
4.2 Decision Process - Influencing Factors, Implementation Model as Outcome . . 33
4.3 Decision Process Extended by Influencing Factors 34
4.4 Methods deliver results to support the decision process 38
4.5 The complete decision process model . 39
4.6 Costs development in relation to content features and integration complexity 41
4.7 Cost requirements for implementation . 42

5.1 Architecture Example Application . 46
5.2 Overview Conceptual Aspects and Enterprise Application 49
5.3 Mapping of Content Into Java Classes . 50
5.4 Implementation Overview of the Modelling Aspect 54
5.5 Implementation Overview of the Activation Aspect 56
5.6 Architecture Example Application with Content 64
5.7 Overview Diagram of all CEF Components Integrated into the Example Ap-

plication . 68

6.1 Fields of suitability for CEF . 70
6.2 Cost savings for hybrid implementations achieved by CEF 70

87

List of Tables

4.1 Distinction between Enterprise Applications and Content Applications 33
4.2 Example result of the Survey Method using binary values 35
4.3 Example result of the Survey Method using weighted values 36

5.1 Results of the Survey Method applied for the user story situation. 47
5.2 Mapping between CRUD types and interceptor types 55

A.1 Links . 76

88

